Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence. Epigenetic mechanisms play a pivotal in regulating HSC self-renewal and differentiation, processes essential for maintaining a balanced hematopoietic system in which lineage-specific hematopoietic stem and progenitor cells (HSPCs) pool is sustained. Recent advancements in epigenetic mapping and sequencing technologies have illuminated the dynamic epigenetic landscapes that characterize HSCs and their progeny. Numerous studies have revealed that dysregulation of epigenetic pathways is a hallmark of various hematological malignancies, including leukemias, lymphomas, and myelodysplastic syndromes. This review highlights key findings that demonstrate the impact of epigenetic abnormalities on the disruption of HSPC niches and the progression of oncogenesis in hematological malignancies. Furthermore, this chapter explores the therapeutic potential of targeting epigenetic modifications that are critical in formation and progression of hematologic malignancies. It also discusses the latest developments in epigenetic therapies, including the use of DNA methyltransferase inhibitors, histone deacetylase inhibitors, and emerging drugs targeting other epigenetic regulators. These therapies represent a promising strategy for resetting aberrant epigenetic states, potentially restoring normal hematopoiesis. Conclusively, this chapter offers a thorough overview of the current landscape and future directions of epigenetic research related to the maintenance of the HSPC niches. The insights presented here aim to contribute significantly to the field, offering a reference point for molecular approaches that enhance our understanding of hematopoiesis and its associated hematological malignancies.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.