Affiliations 

  • 1 Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia
Int J Nanomedicine, 2013;8:1817-23.
PMID: 23696700 DOI: 10.2147/IJN.S43693

Abstract

The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94-0.93 nm); therefore, Fe(3)O(4) nanoparticles formed on the exterior surface of talc, with an average size of 1.95-2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe(3)O(4) nanocomposites may have potential applications in the chemical and biological industries.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.