Affiliations 

  • 1 School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
Ultrason Sonochem, 2011 Mar;18(2):669-78.
PMID: 20933452 DOI: 10.1016/j.ultsonch.2010.09.004

Abstract

The development of Fe(III)/TiO(2) catalysts for sonocatalytic degradation of Reactive Blue 4 (RB4) dye in water was carried out using sol-gel method. Their surface morphology, phase transformation and surface characteristics were studied using SEM, XRD and surface analyzer, respectively. Phase transformation from amorphous to anatase occurred at 500°C and transformation of anatase to rutile phase occurred at 700°C. Complete rutile phase was formed at 900°C with corresponding increase in the particle size. Increasing in Fe(III) loading led to a reduction in the anatase phase and with the formation of weaker and broader of diffraction peaks. Surface morphology of the prepared catalyst was clearly observed with increasing calcination temperature. Surface area of the prepared catalyst decreased with increasing calcination temperature or increasing Fe(III) loading. The combination of 0.4 mol% of Fe(III)/TiO(2) with ultrasonic irradiation gave the highest sonocatalytic activity in the removal of RB4 from the aqueous solution. On the other hand, the presence of even small amount of rutile inhibited the catalytic activity of catalyst. 1.5 g/L was the optimum amount of catalyst that led to the highest sonocatalytic degradation of RB4 with an efficiency of 90%. Aeration significantly accelerated the reaction rate. Higher removal at 96% could be achieved with the combination of 0.4Fe(III)/TiO(2) and aeration under ultrasonic irradiation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.