Appl Opt, 2004 Jan 20;43(3):678-81.
PMID: 14765930


The theoretical basis for simultaneous oscillation of 2N - 3 laser lines is due to interference of N (for all even N > or = 2) pump beams in a distributed-feedback dye laser is described. Multiple gratings are produced in a dye solution by interference patterns of N/2 pairs of a frequency-doubled Nd:YAG laser. N/2 pairs of mutually time-delayed pulses induce multiple gratings of different periodicities, of which 2N - 3 gratings support oscillation of 2N - 3 lines and the remaining gratings, because of their larger periods, cannot support Bragg scattering. The maximum number of laser lines depends on the mutual delay between adjacent pairs of beams, coherence, states of polarization, pulse lengths, and of course the number of pulses. For three pairs of excitation beams derived from the same source through wave-front or amplitude phase division techniques, the output lasing lines varied from a minimum of three to a maximum of nine. This research was carried out by pumping of a dye solution with two, four, and six pulses, but the principle may be extended to multiple output lines, depending on the number of pump pulses and on the gain of the dye solution.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.