String theory is currently considered as the leading candidate for a unified theory of physics combining the Standard Model of forces and particles with gravity which is best described by Einstein theory of General Relativity. Contrary to classical model of point particle, String theory proposes that matter, force, even space and time are composed of tiny vibrating strings. This paper is to elaborate on the correspondence between string states and quantum fields by initially constructing general time-dependent states from string basis states analogous to general timedependent super-positions of basis states for a point particle. From this derivation we can show that an equation emerges from the 'classical' Schrodinger equation that represents the Schrodinger equation in String theory. This is very interesting to investigate since the Schrodinger equation is at the core of Quantum Mechanics which is the foundation of Standard Model that is the pillar of Nuclear physics.