• 1 University of Nottingham Malaysia Campus


Two different supercapacitor configurations were fabricated using coconut shell-based activated
carbon. Results for cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge measurements are presented and discussed for both configurations. The results show that coconut shell-based activated carbon is viable economical alternative electrode material to expensive activated carbon (AC) and carbon nano tubes (CNT). Meanwhile, the calculations from the charge-discharge characteristics show that the disk-shape supercapacitor, with 10% polyvinylidene fluoride binder (PVdF), has the highest specific capacitance (70F/g). Thus, the testing shows that the flat-laminated super-capacitor with 10% binder (PVdF) has the lowest (10.1ohms). Sources of high equivalent series resistance (ESR) are proposed and methods of reducing it are also discussed in this paper.