Affiliations 

  • 1 Universiti Malaysia Pahang
  • 2 Universiti Teknologi Malaysia
MyJurnal

Abstract

This paper presents investigations into the development of control schemes for end-point vibration
suppression and input tracking of a flexible manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the assumed mode method. To study the effectiveness of the controllers, a Linear Quadratic Regulator (LQR) was initially developed for control of rigid body motion. This is then extended to incorporate a noncollocated PID controller and a feedforward controller based on input shaping techniques to control vibration (flexible motion) of the system. For feedforward controller, positive and modified specified negative amplitude (SNA) input shapers are proposed and designed based on the properties of the system. Results from the simulation of the manipulator responses with the controllers are presented in time and frequency domains. The performances of the control schemes are assessed in terms of level of vibration reduction, input tracking capability and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed.