Affiliations 

  • 1 University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2 University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur 50603, Malaysia; Institute of Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, Kuala Lumpur 50603, Malaysia. Electronic address: maan_hayyan@yahoo.com
  • 3 University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur 50603, Malaysia; Institute of Halal Research University of Malaya (IHRUM), Academy of Islamic Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 4 Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 5 Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006

Abstract

Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.