Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Jeong J
    Sensors (Basel), 2011;11(7):6816-41.
    PMID: 22163987 DOI: 10.3390/s110706816
    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.
    Matched MeSH terms: Bioengineering/methods*
  2. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY
    Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
    PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006
    Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.
    Matched MeSH terms: Bioengineering*
  3. Wijesekara P, Ng WH, Feng M, Ren X
    Curr Opin Organ Transplant, 2018 12;23(6):657-663.
    PMID: 30234735 DOI: 10.1097/MOT.0000000000000577
    PURPOSE OF REVIEW: Engineering vasculature that meets an organ's specific physiology and function is a fundamental step in organ bioengineering. In this article, we review approaches for engineering functional vasculature for organ bioengineering, with an emphasis on the engineering of organ-specific endothelium and vasculature.

    RECENT FINDINGS: Recent advances in hydrogel-based engineering of vascularized organ bud enable vascular regeneration in self-assembled cellular niche containing parenchymal and stromal cells. The emerging technology of whole-organ decellularization provides scaffold materials that serve as extracellular niche guiding vascular regeneration to recapitulate native organ's vascular anatomy. Increasing morphological and molecular evidences suggest endothelial heterogeneity across different organs and across different vascular compartments within an organ. Deriving organ-specific endothelium from pluripotent stem cells has been shown to be possible by combining endothelial induction with parenchymal differentiation.

    SUMMARY: Engineering organ-specific vasculature requires the combination of organ-specific endothelium with its unique cellular and extracellular niches. Future investigations are required to further delineate the mechanisms for induction and maintenance of organ-specific vascular phenotypes, and how to incorporate these mechanisms to engineering organ-specific vasculature.

    Matched MeSH terms: Bioengineering/methods*
  4. Show PL, Chew KW, Chang JS
    Bioengineered, 2020 12;11(1):188.
    PMID: 32077364 DOI: 10.1080/21655979.2020.1729546
    Matched MeSH terms: Bioengineering/methods*
  5. Qi H, Huang G, Han Y, Zhang X, Li Y, Pingguan-Murphy B, et al.
    Tissue Eng Part B Rev, 2015 Jun;21(3):288-97.
    PMID: 25547514 DOI: 10.1089/ten.TEB.2014.0494
    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.
    Matched MeSH terms: Bioengineering/methods
  6. Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, et al.
    Ann Biomed Eng, 2023 Nov;51(11):2365-2383.
    PMID: 37466879 DOI: 10.1007/s10439-023-03322-x
    Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
    Matched MeSH terms: Bioengineering*
  7. Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, et al.
    Chemosphere, 2023 Oct;339:139699.
    PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699
    Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
    Matched MeSH terms: Bioengineering
  8. Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, et al.
    Bioengineered, 2023 Dec;14(1):2252228.
    PMID: 37661811 DOI: 10.1080/21655979.2023.2252228
    Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
    Matched MeSH terms: Bioengineering
  9. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
    Matched MeSH terms: Bioengineering/methods*
  10. Lim MN, Umapathy T, Baharuddin PJ, Zubaidah Z
    Med J Malaysia, 2011 Oct;66(4):335-41.
    PMID: 22299553 MyJurnal
    Transplantation of cultivated limbal epithelium on substrates such as amniotic membrane is an established treatment for severe ocular surface disease with limbal stem cell deficiency. In this study, we adapted an established method to generate sheets of limbal epithelium on amniotic membrane and characterized the cells contained in these sheets and tested them for safety with regard to microbial contamination. Human limbal biopsies were cultivated on denuded amniotic membranes. After three weeks of culture, the phenotypes of cultivated cells were analyzed by immunohistochemistry and real-time RT-PCR for the expression of a panel of specific markers. Cultivated limbal epithelial cell sheets were also analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Sterility tests and mycoplasma assays were conducted for the safety of product. A confluent layer of polygonal cells was formed in 2 weeks and 1-3 stratified layer of cells were observed after three weeks of culture. Cultivated cells were positive for p63, K3, K19, and involucrin but negative for K14, integrin alpha9 and ABCG2 when analyzed by immunohistochemistry. Expression of molecular markers was detectable with real-time RT-PCR. SEM showed multilayer of flat squamous polygonal epithelial cells. Desmosomal and hemidesmosomal attachments were evident. Our study showed that cultivated limbal epithelium consists of limbal progenitors as well as differentiated corneal epithelial cells. SEM and TEM analysis showed cultivated cells demonstrated typical features of corneal epithelium. The risk of contamination is low and can be prevented by culturing the cells in a clean room facility complying to Good Manufacturing Practice standard.
    Matched MeSH terms: Bioengineering*
  11. Dorairaj D, Osman N
    PeerJ, 2021;9:e10477.
    PMID: 33520435 DOI: 10.7717/peerj.10477
    Population increase and the demand for infrastructure development such as construction of highways and road widening are intangible, leading up to mass land clearing. As flat terrains become scarce, infrastructure expansions have moved on to hilly terrains, cutting through slopes and forests. Unvegetated or bare slopes are prone to erosion due to the lack of or insufficient surface cover. The combination of exposed slope, uncontrolled slope management practices, poor slope planning and high rainfall as in Malaysia could steer towards slope failures which then results in landslides under acute situation. Moreover, due to the tropical weather, the soils undergo intense chemical weathering and leaching that elevates soil erosion and surface runoff. Mitigation measures are vital to address slope failures as they lead to economic loss and loss of lives. Since there is minimal or limited information and investigations on slope stabilization methods in Malaysia, this review deciphers into the current slope management practices such as geotextiles, brush layering, live poles, rock buttress and concrete structures. However, these methods have their drawbacks. Thus, as a way forward, we highlight the potential application of soil bioengineering methods especially on the use of whole plants. Here, we discuss the general attributions of a plant in slope stabilization including its mechanical, hydrological and hydraulic effects. Subsequently, we focus on species selection, and engineering properties of vegetation especially rooting structures and architecture. Finally, the review will dissect and assess the ecological principles for vegetation establishment with an emphasis on adopting the mix-culture approach as a slope failure mitigation measure. Nevertheless, the use of soil bioengineering is limited to low to moderate risk slopes only, while in high-risk slopes, the use of traditional engineering measure is deemed more appropriate and remain to be the solution for slope stabilization.
    Matched MeSH terms: Bioengineering
  12. Benbelgacem, Farah Fadwa, Bellag, Oualid Abdelkader, Soroodi, Fatemeh, Abdul Aziz Ahmad, Hamzah Mohd Salleh, Noorbatcha, Ibrahim Ali
    MyJurnal
    Biocatalyst should have sufficient and efficient activity for the intended
    biotechnological application. In the quest for novel biocatalyst, there is a need to have a
    genetic diversity either by finding it within the astronomically large number of possible
    candidates or to obtain it by bioengineering an existing gene supported by various
    bioinformatic and molecular engineering tools. Nowadays, it is well-known that a huge
    number of microorganisms is unculturable and poses great challenges to access biocatalysts
    from these microbes. Metagenomics is one of the methods widely applied to reach out
    maximum possible variants to “bioprospect” biocatalysts. On the other hand, other approaches
    are available to bioengineer enzymes by modifying the DNA sequence precisely based on the
    structure and the function information of the protein in the case of rational design, or by a
    brave creation of anarchic mutations of the DNA sequence with directed evolution method. In
    this regard, both approaches, whether to bioprospect or to bioengineer biocatalysts have
    advantages and disadvantages which will be discussed in this paper.KEY WORDS: Sugar
    industry wastewater; aluminium sulphate; primary treatment, ferric chloride; polyaluminium
    chloride
    Matched MeSH terms: Bioengineering
  13. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, et al.
    Biology (Basel), 2021 Feb 25;10(3).
    PMID: 33668707 DOI: 10.3390/biology10030172
    Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
    Matched MeSH terms: Bioengineering
  14. Normaniza Osman, Mohamad Nordin Abdullah, Che Hassandi Abdullah
    Sains Malaysiana, 2011;40:1123-1127.
    A bioengineering technique is gradually being used as an alternative for slope stabilisation design. The effect of vegetation on soil strength, particularly in terms of root reinforcement aspects has therefore become a major interest. However, there is a lack of documentation on the root mechanical properties available especially in Malaysia. In this study, both pull-out and tensile strength of two tropical trees namely Leucaena leucocephala and Acacia mangium were investigated on different stem sizes. L. leucocephala performs the higher pullout strength than A. mangium. The results also show that pullout resistance is much affected by the root than the shoot profiles. In terms of tensile strength, the tensile strength decreases with increasing root diameter, implying the finer root diameter contribute to the higher tensile strength. In both parameters, L. leucocephala exhibits the highest value. The study suggests that L. leucocephala has an added value as a good potential slope plant for slope stabilization work as it exhibits outstanding root mechanical properties. Interestingly, the results also showed that the pullout force was much affected by the tensile strength. It can be concluded that some root and shoot properties do have a great impact on root mechanical properties such as tensile and pullout strengths.
    Matched MeSH terms: Bioengineering
  15. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour Technol, 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
    Matched MeSH terms: Bioengineering/trends
  16. Chan SK, Lim TS
    Appl Microbiol Biotechnol, 2019 Apr;103(7):2973-2984.
    PMID: 30805670 DOI: 10.1007/s00253-019-09669-3
    Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
    Matched MeSH terms: Bioengineering/methods*
  17. Chee MJ, Lycett GW, Khoo TJ, Chin CF
    Mol Biotechnol, 2017 Jan;59(1):1-8.
    PMID: 27826796 DOI: 10.1007/s12033-016-9986-2
    Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.
    Matched MeSH terms: Bioengineering/methods
  18. Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S
    Appl Microbiol Biotechnol, 2018 Jul;102(14):5811-5826.
    PMID: 29749565 DOI: 10.1007/s00253-018-9063-9
    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
    Matched MeSH terms: Bioengineering
  19. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN
    Data Brief, 2018 Apr;17:1245-1252.
    PMID: 29845096 DOI: 10.1016/j.dib.2018.02.053
    The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm) to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose) based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials). Moreover, the chemical elements of nanobiofilm like K+, CO3--, Cl-, Na+ showed standard data using the EN (166).
    Matched MeSH terms: Bioengineering
  20. Sharif Hossain ABM, Uddin MM, Veettil VN, Fawzi M
    Data Brief, 2018 Apr;17:162-168.
    PMID: 29877503 DOI: 10.1016/j.dib.2017.12.046
    The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials) standard. In addition to that data on the chemical element test like K+,


    CO


    3


    -
    -


    , Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166)) standardization. Therefore, it can be concluded that both organic (cellulose and starch) based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries.
    Matched MeSH terms: Bioengineering
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links