Biocatalyst should have sufficient and efficient activity for the intended
biotechnological application. In the quest for novel biocatalyst, there is a need to have a
genetic diversity either by finding it within the astronomically large number of possible
candidates or to obtain it by bioengineering an existing gene supported by various
bioinformatic and molecular engineering tools. Nowadays, it is well-known that a huge
number of microorganisms is unculturable and poses great challenges to access biocatalysts
from these microbes. Metagenomics is one of the methods widely applied to reach out
maximum possible variants to “bioprospect” biocatalysts. On the other hand, other approaches
are available to bioengineer enzymes by modifying the DNA sequence precisely based on the
structure and the function information of the protein in the case of rational design, or by a
brave creation of anarchic mutations of the DNA sequence with directed evolution method. In
this regard, both approaches, whether to bioprospect or to bioengineer biocatalysts have
advantages and disadvantages which will be discussed in this paper.KEY WORDS: Sugar
industry wastewater; aluminium sulphate; primary treatment, ferric chloride; polyaluminium
chloride