Displaying publications 1 - 20 of 236 in total

Abstract:
Sort:
  1. Arujanan M, Singaram M
    N Biotechnol, 2018 Jan 25;40(Pt A):52-59.
    PMID: 28668584 DOI: 10.1016/j.nbt.2017.06.004
    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies.
    Matched MeSH terms: Biotechnology*
  2. Alshaibani MM, Mohamad Zin N, Jalil J, Sidik NM, Ahmad SJ, Kamal N, et al.
    J Microbiol Biotechnol, 2017 11 28;27(11):2074.
    PMID: 29169008 DOI: 10.4014/jmb.2017.2711.2074
    This erratum is being published to correct the 2nd author's name of above manuscript by Alshaibani et al. that was published in Journal of Microbiology and Biotechnology (2017, 27: 1249-1256). The 2nd author name(Noraziah MohamadZin) should appear as 'Noraziah Mohamad Zin'.
    Matched MeSH terms: Biotechnology
  3. Habibi N, Samian MR, Hashim SZ, Norouzi A
    Protein Expr. Purif., 2014 Mar;95:92-5.
    PMID: 24333540 DOI: 10.1016/j.pep.2013.11.014
    Recombinant protein production is a significant biotechnological process as it allows researchers to produce a specific protein in desired quantities. Escherichia coli (E. coli) is the most popular heterologous expression host for the production of recombinant proteins due to its advantages such as low cost, high-productivity, well-characterized genetics, simple growth requirements and rapid growth. There are a number of factors that influence the expression level of a recombinant protein in E. coli which are the gene to be expressed, the expression vector, the expression host, and the culture condition. The major motivation to develop our database, EcoliOverExpressionDB, is to provide a means for researchers to quickly locate key factors in the overexpression of certain proteins. Such information would be a useful guide for the overexpression of similar proteins in E. coli. To the best of the present researchers' knowledge, in general and specifically in E. coli, EcoliOverExpressionDB is the first database of recombinant protein expression experiments which gathers the influential parameters on protein overexpression and the results in one place.
    Matched MeSH terms: Biotechnology*
  4. Hamdan SH, Maiangwa J, Ali MSM, Normi YM, Sabri S, Leow TC
    Appl Microbiol Biotechnol, 2021 Oct;105(19):7069-7094.
    PMID: 34487207 DOI: 10.1007/s00253-021-11520-7
    Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
    Matched MeSH terms: Biotechnology*
  5. Ortiz R, Swennen R
    Biotechnol Adv, 2014 Jan-Feb;32(1):158-69.
    PMID: 24091289 DOI: 10.1016/j.biotechadv.2013.09.010
    The annual harvest of banana and plantain (Musa spp.) is approximately 145 million tons worldwide. About 85% of this global production comes from small plots and kitchen or backyard gardens from the developing world, and only 15% goes to the export trade. Musa acuminata and Musa balbisiana are the ancestors of several hundreds of parthenocarpic Musa diploid and polyploid cultivars, which show multiple origins through inter- and intra-specific hybridizations from these two wild diploid species. Generating hybrids combining host plant resistance to pathogens and pests, short growth cycles and height, high fruit yield, parthenocarpy, and desired quality from the cultivars remains a challenge for Musa crossbreeding, which started about one century ago in Trinidad. The success of Musa crossbreeding depends on the production of true hybrid seeds in a crop known for its high levels of female sterility, particularly among polyploid cultivars. All banana export cultivars grown today are, however, selections from somatic mutants of the group Cavendish and have a very narrow genetic base, while smallholders in sub-Saharan Africa, tropical Asia and Latin America use some bred-hybrids (mostly cooking types). Musa improvement goals need to shift to address emerging threats because of the changing climate. Innovative cell and molecular biology tools have the potential to enhance the pace and efficiency of genetic improvement in Musa. Micro-propagation has been successful for high throughput of clean planting materials while in vitro seed germination assists in obtaining seedlings after inter-specific and across ploidy hybridization. Flow cytometry protocols are used for checking ploidy among genebank accessions and breeding materials. DNA markers, the genetic maps based on them, and the recent sequencing of the banana genome offer means for gaining more insights in the genetics of the crops and to identifying genes that could lead to accelerating Musa betterment. Likewise, DNA fingerprinting has been useful to characterize Musa diversity. Genetic engineering provides a complementary tool to Musa breeders who can introduce today transgenes that may confer resistance to bacteria, fungi and nematodes, or enhance pro-vitamin A fruit content. In spite of recent advances, the genetic improvement of Musa depends on a few crossbreeding programs (based in Brazil, Cameroon, Côte d'Ivoire, Guadeloupe, Honduras, India, Nigeria, Tanzania and Uganda) or a handful of genetic engineering endeavors (Australia, Belgium, India, Kenya, Malaysia and Uganda). Development investors (namely international aid and philanthropy) should therefore increase their funding to genetically enhance this crop that ranks among the 10-top staple foods of the developing world.
    Matched MeSH terms: Biotechnology*
  6. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY
    Biotechnol Adv, 2017 Mar-Apr;35(2):105-134.
    PMID: 27923764 DOI: 10.1016/j.biotechadv.2016.11.006
    Deep eutectic solvents (DESs) have been touted recently as potential alternatives to ionic liquids (ILs). Although they possess core characteristics that are similar to those of ILs (e.g., low volatility, non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal stability, high solubility, and tuneability), DESs are superior in terms of the availability of raw materials, the ease of storage and synthesis, and the low cost of their starting materials. As such, they have become the subject of intensive research in various sectors, notably the chemical, electrochemical, and biological sectors. To date, the applications of DESs have shown great promise, especially in the medical and biotechnological fields. In spite of these various achievements, the safety concern for these mixtures must be sufficiently addressed. Indeed, in order to exploit the vast array of opportunities that DESs offer to the biological industry, first, they must be established as safe mixtures. Hence, the biotechnological applications of DESs only can be implemented if they are proven to have negligible or low toxicity profiles. This review is the first of its kind, and it discusses two current aspects of DES-based research. First, it describes the properties of these mixtures with ample focus on their toxicity profiles. Second, it provides an overview of the breakthroughs that have occurred and the foreseeable prospects of the use of DESs in various biotechnological and biological applications.
    Matched MeSH terms: Biotechnology*
  7. Kee PE, Ng TC, Lan JC, Ng HS
    Crit Rev Biotechnol, 2020 Jun;40(4):555-569.
    PMID: 32283954 DOI: 10.1080/07388551.2020.1747388
    Aqueous biphasic system (ABS) is widely used in the recovery, extraction, purification and separation of proteins, enzymes, nucleic acids and antibodies. The ABS with high water content and low interfacial tension offers a biocompatible environment for the recovery of labile biomolecules. Process integration can be achieved using ABS by incorporating multiple-steps of purification, concentration and purification of biomolecules in a single-step operation which often results in high product recovery yield and purity. Conventional ABS is usually formed by aqueous solutions of two polymers or a polymer and a salt above a critical concentration. The high viscosity of polymer-based ABS causes slow phase separation and hinders the mass transfer of biomolecules, whereas polymer/salt ABS is characterized by high ionic strength resulting in the loss of bioactivity of recovered biomolecules. These limitations have encouraged the development of novel ABS which is more cost-effective for various biotechnological applications. This review discusses the characteristics and mechanisms of several types of emerging unconventional ABS using phase-forming components such as hyperbranched polymers, special salts, surfactants, magnetic fields, the addition of nanoparticles and incorporation of various solvent. Moreover, several novel applications of ABS for different separation purposes such as microfluidic-based ABS, ABS bioreactors, application of ABS as an analytical tool, and ABS micropatterning are discussed in this review. In the last section of this review, a comprehensive summary of process integration using ABS for extractive fermentations, bioconversion, crystallization and precipitation is also supplemented for the comprehensive review of various types and applications of ABS in recent years.
    Matched MeSH terms: Biotechnology/methods*
  8. Show KY, Lee DJ, Chang JS
    Bioresour Technol, 2011 Sep;102(18):8524-33.
    PMID: 21624834 DOI: 10.1016/j.biortech.2011.04.055
    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.
    Matched MeSH terms: Biotechnology/instrumentation*; Biotechnology/methods*
  9. Thakur IS, Lee KT, Nigam PS, Sukumaran RK
    Bioresour Technol, 2015;188:1.
    PMID: 25953660 DOI: 10.1016/j.biortech.2015.04.076
    Matched MeSH terms: Biotechnology/methods*; Biotechnology/trends*
  10. Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH
    Biotechnol Adv, 2012 Nov-Dec;30(6):1364-80.
    PMID: 22366515 DOI: 10.1016/j.biotechadv.2012.02.009
    In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.
    Matched MeSH terms: Biotechnology/economics; Biotechnology/methods*; Biotechnology/standards
  11. Chan KG, Yong D, Ee R, Lim YL, Yu CY, Tee KK, et al.
    J Biotechnol, 2016 Feb 10;219:124-5.
    PMID: 26742625 DOI: 10.1016/j.jbiotec.2015.12.037
    Pandoraea oxalativorans DSM 23570(T) is an oxalate-degrading bacterium that was originally isolated from soil litter near to oxalate-producing plant of the genus Oxalis. Here, we report the first complete genome of P. oxalativorans DSM 23570(T) which would allow its potential biotechnological applications to be unravelled.
    Matched MeSH terms: Biotechnology
  12. Saifuddeen SM, Rahman NN, Isa NM, Baharuddin A
    Sci Eng Ethics, 2014 Jun;20(2):317-27.
    PMID: 23836155 DOI: 10.1007/s11948-013-9457-0
    With the rapid advancements made in biotechnology, bioethical discourse has become increasingly important. Bioethics is a multidisciplinary and interdisciplinary field that goes beyond the realm of natural sciences, and has involved fields in the domain of the social sciences. One of the important areas in bioethical discourse is religion. In a country like Malaysia, where Muslims make up the majority of the population, Islam plays a crucial role in providing the essential guidelines on the permissibility and acceptability of biotechnological applications in various fields such as medicine, agriculture, and food processing. This article looks at the framework of a complementary model of bioethics derived from the perspective of Islam. The framework is based on 'maqasid al-shariah' (purposes or objectives of Islamic law) which aims to protect and preserve mankind's faith, life, intellect, progeny, and property. It is proposed that 'maqasid al-shariah' be used as a pragmatic checklist that can be utilized in tackling bioethical issues and dilemmas.
    Matched MeSH terms: Biotechnology/ethics*
  13. Aziz NS, Sofian-Seng NS, Mohd Razali NS, Lim SJ, Mustapha WA
    J Sci Food Agric, 2019 Apr;99(6):2665-2676.
    PMID: 30426501 DOI: 10.1002/jsfa.9481
    White pepper is the dried seeds obtained from pepper berries (Piper nigrum L.) after the removal of the pericarp. It has been widely used as seasoning and condiments in food preparation. Globally, white pepper fetches a higher price compared to black pepper due to its lighter colour, preferable milder flavour and pungency. Increasing global demand of the spice outpaced the supply as the conventional production method used is laborious, lengthy and also not very hygienic. The most common conventional method is water retting but can also include pit soil, chemical, boiling, steaming and mechanical methods. The introduction of a biotechnological approach has gained a lot of interest, as it is a more rapid, convenient and hygienic method of producing white pepper. This technique involves the application of microorganisms and/or enzymes. This review highlights both conventional and latest biotechnological processes of white pepper production. © 2018 Society of Chemical Industry.
    Matched MeSH terms: Biotechnology*
  14. Cyranoski D
    Nature, 2005 Aug 4;436(7051):620-1.
    PMID: 16079812
    Matched MeSH terms: Biotechnology/economics; Biotechnology/manpower; Biotechnology/organization & administration*; Biotechnology/trends*
  15. Loow YL, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JM, et al.
    J Agric Food Chem, 2015 Sep 30;63(38):8349-63.
    PMID: 26325225 DOI: 10.1021/acs.jafc.5b01813
    Currently, the transformation of lignocellulosic biomass into value-added products such as reducing sugars is garnering attention worldwide. However, efficient hydrolysis is usually hindered by the recalcitrant structure of the biomass. Many pretreatment technologies have been developed to overcome the recalcitrance of lignocellulose such that the components can be reutilized more effectively to enhance sugar recovery. Among all of the utilized pretreatment methods, inorganic salt pretreatment represents a more novel method and offers comparable sugar recovery with the potential for reducing costs. The use of inorganic salt also shows improved performance when it is integrated with other pretreatment technologies. Hence, this paper is aimed to provide a detailed overview of the current situation for lignocellulosic biomass and its physicochemical characteristics. Furthermore, this review discusses some recent studies using inorganic salt for pretreating biomass and the mechanisms involved during the process. Finally, some prospects and challenges using inorganic salt are highlighted.
    Matched MeSH terms: Biotechnology/methods; Biotechnology/trends*
  16. Akbari E, Buntat Z, Afroozeh A, Zeinalinezhad A, Nikoukar A
    IET Nanobiotechnol, 2015 Oct;9(5):273-9.
    PMID: 26435280 DOI: 10.1049/iet-nbt.2015.0010
    Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current-voltage (I-V) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0-10(5) cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the I-V characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data.
    Matched MeSH terms: Biotechnology/instrumentation*; Biotechnology/methods
  17. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al.
    Bioresour Technol, 2017 Apr;229:53-62.
    PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006
    Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
    Matched MeSH terms: Biotechnology/economics*; Biotechnology/methods*
  18. Tan CH, Show PL, Chang JS, Ling TC, Lan JC
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 2):1219-27.
    PMID: 25728066 DOI: 10.1016/j.biotechadv.2015.02.013
    Microalgae have caught the world's attention for its potential to solve one of the world's most pressing issues-sustainable green energy. Compared to biofuels supplied by oil palm, rapeseed, soybean and sugar cane, microalgae alone can be manipulated to generate larger amounts of biodiesel, bioethanol, biohydrogen and biomass in a shorter time. Apart from higher productivity, microalgae can also grow using brackish water on non-arable land, greatly reducing the competition with food and cash crops. Hence, numerous efforts have been put into the commercialisation of microalgae-derived biofuel by both the government and private bodies. This paper serves to review conventional and novel methods for microalgae culture and biomass harvest, as well as recent developments in techniques for microalgal biofuel production.
    Matched MeSH terms: Biotechnology/methods*
  19. Kling J
    Nat Biotechnol, 2012 Feb;30(2):128-31.
    PMID: 22318024 DOI: 10.1038/nbt.2111
    Matched MeSH terms: Biotechnology/trends
  20. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
    Matched MeSH terms: Biotechnology/methods*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links