Displaying publications 1 - 20 of 34 in total

  1. Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F
    Crit Rev Biotechnol, 2016 Aug;36(4):619-29.
    PMID: 25669871 DOI: 10.3109/07388551.2014.1002381
    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
  2. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA
    Crit Rev Biotechnol, 2016;36(2):353-67.
    PMID: 25394538 DOI: 10.3109/07388551.2014.961403
    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
  3. Zaman SA, Sarbini SR
    Crit Rev Biotechnol, 2016 Jun;36(3):578-84.
    PMID: 25582732 DOI: 10.3109/07388551.2014.993590
    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.
  4. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al.
    Crit Rev Biotechnol, 2016 Aug;36(4):585-93.
    PMID: 25641328 DOI: 10.3109/07388551.2014.995586
    Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.
  5. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
  6. Phing Lau WC, Latif MA, Y Rafii M, Ismail MR, Puteh A
    Crit Rev Biotechnol, 2016;36(1):87-98.
    PMID: 24937109 DOI: 10.3109/07388551.2014.923987
    The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.
  7. Azizi P, Rafii MY, Abdullah SN, Nejat N, Maziah M, Hanafi MM, et al.
    Crit Rev Biotechnol, 2016;36(1):165-74.
    PMID: 25198435 DOI: 10.3109/07388551.2014.946883
    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.
  8. Choi SB, Lew LC, Yeo SK, Nair Parvathy S, Liong MT
    Crit Rev Biotechnol, 2015;35(3):392-401.
    PMID: 24575869 DOI: 10.3109/07388551.2014.889077
    Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.
  9. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V
    Crit Rev Biotechnol, 2015;35(3):355-68.
    PMID: 24654802 DOI: 10.3109/07388551.2014.887649
    Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
  10. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
  11. Fisinin VI, Papazyan TT, Surai PF
    Crit Rev Biotechnol, 2009;29(1):18-28.
    PMID: 19514900 DOI: 10.1080/07388550802658030
    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.
  12. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2008;28(4):253-64.
    PMID: 19051104 DOI: 10.1080/07388550802428392
    Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.
  13. Rahman MA, Abdullah N, Aminudin N
    Crit Rev Biotechnol, 2016 Dec;36(6):1131-1142.
    PMID: 26514091
    Alzheimer's disease (AD) and cardiovascular diseases (CVD) share common etiology and preventive strategies. As the population of old-aged people is increasing worldwide, AD complications tend to afflict global healthcare budget and economy heavily. CVD is the prime cause of global mortality and remains a grave threat to both the developed and the developing nations. Mushroom bio-components may be promising in controlling both diseases. Based mainly on in vitro, ex vivo, cell line and animal studies, this review interprets the polypharmaceutic role of mushrooms treating AD and CVD.
  14. Acquah C, Danquah MK, Agyei D, Moy CK, Sidhu A, Ongkudon CM
    Crit Rev Biotechnol, 2016 Dec;36(6):1010-1022.
    PMID: 26381238
    The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
  15. Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2016 Apr 14.
    PMID: 27075621 DOI: 10.3109/07388551.2016.1164664
    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
  16. Choi JR, Hu J, Wang S, Yang H, Wan Abas WA, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2017 Feb;37(1):100-111.
    PMID: 26912259
    Dengue endemic is a serious healthcare concern in tropical and subtropical countries. Although well-established laboratory tests can provide early diagnosis of acute dengue infections, access to these tests is limited in developing countries, presenting an urgent need to develop simple, rapid, and robust diagnostic tools. Point-of-care (POC) devices, particularly paper-based POC devices, are typically rapid, cost-effective and user-friendly, and they can be used as diagnostic tools for the prompt diagnosis of dengue at POC settings. Here, we review the importance of rapid dengue diagnosis, current dengue diagnostic methods, and the development of paper-based POC devices for diagnosis of dengue infections at the POC.
  17. Nejat N, Rookes J, Mantri NL, Cahill DM
    Crit Rev Biotechnol, 2017 Mar;37(2):229-237.
    PMID: 26796880 DOI: 10.3109/07388551.2015.1134437
    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
  18. Dullah EC, Ongkudon CM
    Crit Rev Biotechnol, 2017 Mar;37(2):251-261.
    PMID: 26863480 DOI: 10.3109/07388551.2016.1141393
    Endotoxin is a type of pyrogen that can be found in Gram-negative bacteria. Endotoxin can form a stable interaction with other biomolecules thus making its removal difficult especially during the production of biopharmaceutical drugs. The prevention of endotoxins from contaminating biopharmaceutical products is paramount as endotoxin contamination, even in small quantities, can result in fever, inflammation, sepsis, tissue damage and even lead to death. Highly sensitive and accurate detection of endotoxins are keys in the development of biopharmaceutical products derived from Gram-negative bacteria. It will facilitate the study of the intermolecular interaction of an endotoxin with other biomolecules, hence the selection of appropriate endotoxin removal strategies. Currently, most researchers rely on the conventional LAL-based endotoxin detection method. However, new methods have been and are being developed to overcome the problems associated with the LAL-based method. This review paper highlights the current research trends in endotoxin detection from conventional methods to newly developed biosensors. Additionally, it also provides an overview of the use of electron microscopy, dynamic light scattering (DLS), fluorescence resonance energy transfer (FRET) and docking programs in the endotoxin-protein analysis.
  19. Wong FWF, Ariff AB, Stuckey DC
    Crit Rev Biotechnol, 2018 Feb;38(1):31-46.
    PMID: 28427287 DOI: 10.1080/07388551.2017.1312266
    In a conventional protein downstream processing (DSP) scheme, chromatography is the single most expensive step. Despite being highly effective, it often has a low process throughput due to its semibatch nature, sometimes with nonreproducible results and relatively complex process development. Hence, more work is required to develop alternative purification methods that are more cost-effective, but exhibiting nearly comparable performance. In recent years, surfactant precipitation has been heralded as a promising new method for primary protein recovery that meets these criteria and is a simple and cost-effective method that purifies and concentrates. The method requires the direct addition of a surfactant to a complex solution (e.g. a fermentation broth) containing the protein of interest, where the final surfactant concentration is maintained below its critical micelle concentration (CMC) in order to allow for electrostatic and hydrophobic interactions between the surfactant and the target protein. An insoluble (hydrophobic) protein-surfactant complex is formed and backextraction of the target protein from the precipitate into a new aqueous phase is then carried out using either solvent extraction, or addition of a counter-ionic surfactant. Importantly, as highlighted by past researchers, the recovered proteins maintain their activity and structural integrity, as determined by circular dichroism (CD). In this review, various aspects of surfactant precipitation with respect to its general methodology and process mechanism, system parameters influencing performance, protein recovery, process selectivity and process advantages will be highlighted. Moreover, comparisons will be made to reverse micellar extraction, and the current drawbacks/challenges of surfactant precipitation will also be discussed. Finally, promising directions of future work with this separation technique will be highlighted.
  20. Abdul Manas NH, Md Illias R, Mahadi NM
    Crit Rev Biotechnol, 2018 Mar;38(2):272-293.
    PMID: 28683572 DOI: 10.1080/07388551.2017.1339664
    BACKGROUND: The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity.

    PURPOSE: Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides.

    DESIGN AND METHODS: This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product.

    CONCLUSIONS: The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.

Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links