Displaying publications 1 - 20 of 3441 in total

  1. Adamowicz SJ, Chain FJ, Clare EL, Deiner K, Dincă V, Elías-Gutiérrez M, et al.
    Genome, 2016 Sep;59(9):v-ix.
    PMID: 27611699 DOI: 10.1139/gen-2016-0159
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  2. Norazizah S, AbuBakar S
    JUMMEC, 2001;6:40-41.
    Matched MeSH terms: DNA; DNA Fragmentation
  3. Saidon NA, Wagiran A, Samad AFA, Mohd Salleh F, Mohamed F, Jani J, et al.
    Genes (Basel), 2023 Mar 11;14(3).
    PMID: 36980969 DOI: 10.3390/genes14030697
    Nepentheceae, the most prominent carnivorous family in the Caryophyllales order, comprises the Nepenthes genus, which has modified leaf trap characteristics. Although most Nepenthes species have unique morphologies, their vegetative stages are identical, making identification based on morphology difficult. DNA barcoding is seen as a potential tool for plant identification, with small DNA segments amplified for species identification. In this study, three barcode loci; ribulose-bisphosphate carboxylase (rbcL), intergenic spacer 1 (ITS1) and intergenic spacer 2 (ITS2) and the usefulness of the ITS1 and ITS2 secondary structure for the molecular identification of Nepenthes species were investigated. An analysis of barcodes was conducted using BLASTn, pairwise genetic distance and diversity, followed by secondary structure prediction. The findings reveal that PCR and sequencing were both 100% successful. The present study showed the successful amplification of all targeted DNA barcodes at different sizes. Among the three barcodes, rbcL was the least efficient as a DNA barcode compared to ITS1 and ITS2. The ITS1 nucleotide analysis revealed that the ITS1 barcode had more variations compared to ITS2. The mean genetic distance (K2P) between them was higher for interspecies compared to intraspecies. The results showed that the DNA barcoding gap existed among Nepenthes species, and differences in the secondary structure distinguish the Nepenthes. The secondary structure generated in this study was found to successfully discriminate between the Nepenthes species, leading to enhanced resolutions.
    Matched MeSH terms: DNA, Plant/genetics
  4. Khalid K, Poh CL
    Adv Med Sci, 2023 Sep;68(2):213-226.
    PMID: 37364379 DOI: 10.1016/j.advms.2023.05.003
    BACKGROUND: The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19.

    METHODS: PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023.

    RESULTS: A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems.

    CONCLUSIONS: The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.

    Matched MeSH terms: Vaccines, DNA*
  5. Fu Z, Piumsomboon A, Punnarak P, Uttayarnmanee P, Leaw CP, Lim PT, et al.
    Harmful Algae, 2021 06;106:102063.
    PMID: 34154784 DOI: 10.1016/j.hal.2021.102063
    Information on the diversity and distribution of harmful microalgae in the Gulf of Thailand is very limited and mainly based on microscopic observations. Here, we collected 44 water samples from the Gulf of Thailand and its adjacent water (Perhentian Island, Malaysia) for comparison in 2018. DNA metabarcoding was performed targeting the partial large subunit ribosomal RNA gene (LSU rDNA D1-D3) and the internal transcribed spacers (ITS1 and ITS2). A total of 50 dinoflagellate genera (made up of 72 species) were identified based on the LSU rDNA dataset, while the results of ITS1 and ITS2 datasets revealed 33 and 32 dinoflagellate genera comprising 69 and 64 species, respectively. Five potentially toxic Pseudo-nitzschia (Bacillariophyceae) species were detected, with four as newly recorded species in the water (Pseudo-nitzschia americana/brasilliana, Pseudo-nitzschia simulans/delicatissima, P. galaxiae and P. multistriata). The highest relative abundances of P. galaxiae and P. multistriata were found in Trat Bay and Chumphon (accounting for 0.20% and 0.06% of total ASVs abundance, respectively). Three paralytic shellfish toxin producing dinoflagellate species were detected: Alexandrium tamiyavanichii, Alexandrium fragae, and Gymnodinium catenatum. The highest abundance of A. tamiyavanichii was found in the surface sample of Chumphon (CHO7 station), accounting for 1.95% of total ASVs abundance. Two azaspiracid producing dinoflagellate species, Azadinium poporum ribotype B, Azadinium spinosum ribotype A, and a pinnatoxin producing dinoflagellate species Vulcanodinium rugosum, with two ribotypes B and C, were revealed from the datasets although with very low abundances. Six fish killing dinoflagellate species, including Margalefidinium polykrikoides group IV, Margalefidinium fulvescens, Karenia mikimotoi, Karenia selliformis ribotype B, Karlodinium australe, and Karlodinium digitatum were detected and all representing new records in this area. The findings of numerous harmful microalgal species in the Gulf of Thailand highlight the potential risk of human intoxication and fish killing events.
    Matched MeSH terms: DNA, Ribosomal/genetics; DNA Barcoding, Taxonomic
  6. Loeillet S, Nicolas A
    DNA Repair (Amst), 2023 Jul;127:103514.
    PMID: 37244009 DOI: 10.1016/j.dnarep.2023.103514
    The evolutionarily conserved DNA polymerase delta (Polδ) plays several essential roles in eukaryotic DNA replication and repair, responsible for the synthesis of the lagging-strand, lower replicative mutagenesis via its proof-reading exonuclease activity and synthetizes both strands during break-induced replication. In Saccharomyces cerevisiae, the Polδ protein complex consists of three subunits encoded by the POL3, POL31 and POL32 genes. Surprisingly, in contrast to POL3 and POL31, the POL32 gene deletion was found to be viable but lethal in all other eukaryotes, raising the question to which extent the viability of the POL32 deletion in S. cerevisiae was species specific. To address this issue, we inactivated the POL32 gene in 10 evolutionary close or distant S. cerevisiae strains and found that POL32 was either essential (3 strains including SK1), non-essential (5 strains including the reference S288C strain) or confers a slow-growth phenotype (2 strains). Whole-genome sequencing of S288C/SK1 pol32∆ meiotic segregants identified the lethal/suppressor effect of the single Pol31-C43Y polymorphism. Consistently, the introduction of the Pol31-43C allele in the SK1 and West African (WA) pol32∆ mutants was sufficient to restore cell viability and wild-type growth upon introduction of two copies of POL31-43C in the SK1 haploid strain. Reciprocally, introduction of the SK1 POL31-43Y allele in the S288C pol32∆ mutant was lethal. Sequence analyses of the POL31 polymorphisms in the 1,011 yeasts genome dataset correlates with the strict occurrence of the POL31-43Y allele in the yeast African palm wine clade. Differently, the single Pol31-E400G polymorphism confers pol32∆ lethality in the Malaysian strain. In the yeast two-hybrid assay, we observed a weakened interaction between Pol3 and Pol31-43Y versus Pol31-43C suggesting an insufficient level of the Polδ holoenzyme stability/activity. Thus, the enigmatic non-essentiality of Pol32 in S. cerevisiae results from single Pol31 amino acid polymorphism and is clade rather than species specific.
    Matched MeSH terms: DNA-Directed DNA Polymerase/metabolism; DNA Replication
  7. Low WF, Ngeow YF, Chook JB, Tee KK, Ong SK, Peh SC, et al.
    Expert Rev Mol Med, 2022 Nov 16;25:e11.
    PMID: 36380484 DOI: 10.1017/erm.2022.38
    Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.
    Matched MeSH terms: DNA, Circular/genetics; DNA, Viral/genetics; DNA, Viral/metabolism; DNA Methylation
  8. Lim YL, Roberts RJ, Ee R, Yin WF, Chan KG
    Genome Announc, 2016 Mar 03;4(2).
    PMID: 26941143 DOI: 10.1128/genomeA.00060-16
    In this report, we announce the complete genome sequence of Aeromonas hydrophila strain YL17. Single-molecule real-time (SMRT) DNA sequencing was used to generate the complete genome sequence and the genome-wide DNA methylation profile of this environmental isolate. A total of five unique DNA methyltransferase recognition motifs were reported here.
    Matched MeSH terms: DNA; Sequence Analysis, DNA; DNA Methylation
  9. Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T
    Chem Commun (Camb), 2019 Oct 15;55(83):12428-12446.
    PMID: 31576822 DOI: 10.1039/c9cc04661e
    DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
    Matched MeSH terms: DNA/metabolism*; DNA/chemistry
  10. Jisming-See SW, Sing KW, Wilson JJ
    Genome, 2016 Oct;59(10):879-888.
    PMID: 27333330 DOI: 10.1139/gen-2015-0156
    The "rings" belonging to the genus Ypthima are amongst the most common butterflies in Peninsular Malaysia. However, the species can be difficult to tell apart, with keys relying on minor and often non-discrete ring characters found on the hindwing. Seven species have been reported from Peninsular Malaysia, but this is thought to be an underestimate of diversity. DNA barcodes of 165 individuals, and wing and genital morphology, were examined to reappraise species diversity of this genus in Peninsular Malaysia. DNA barcodes collected during citizen science projects-School Butterfly Project and Peninsular Malaysia Butterfly Count-recently conducted in Peninsular Malaysia were included. The new DNA barcodes formed six groups with different Barcode Index Numbers (BINs) representing four species reported in Peninsular Malaysia. When combined with public DNA barcodes from the Barcode Of Life Datasystems, several taxonomic issues arose. We consider the taxon Y. newboldi, formerly treated as a subspecies of Y. baldus, as a distinct species. DNA barcodes also supported an earlier suggestion that Y. nebulosa is a synonym under Y. horsfieldii humei. Two BINs of the genus Ypthima comprising DNA barcodes collected during citizen science projects did not correspond to any species previously reported in Peninsular Malaysia.
    Matched MeSH terms: DNA; DNA Replication; DNA Barcoding, Taxonomic
  11. Tan J, Lim PE, Phang SM, Hong DD, Sunarpi H, Hurtado AQ
    PLoS One, 2012;7(12):e52905.
    PMID: 23285223 DOI: 10.1371/journal.pone.0052905
    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.
    Matched MeSH terms: DNA, Mitochondrial/genetics; DNA, Plant/analysis; DNA, Plant/genetics; DNA, Intergenic/genetics; DNA Barcoding, Taxonomic/methods*
  12. Vincent, M., Chan, C. S. W., Apun, K.
    The present study was conducted to assess the rapid molecular identification and characterization of 45 Vibrio parahaemolyticus isolates from 15 samples of 3 different types of fish (Kembung, Bawal and Sangeh) in the Kuching-Samarahan district. Polymerase chain reaction (PCR) based confirmation was done targeting the 450 bp fragment of the thermolabile (tl) gene, while DNA fingerprinting was performed using Randomly Amplified Polymorphic DNA (RAPD) PCR with the primer GEN15008. All the 45 V. parahaemolyticus isolates were positive for the tl gene, however, only 34 were typable via RAPD-PCR with bands sizes ranging from slightly over 250 bp to 2.5 kbp. The degree of diversity was then determined via the Simpson Index which showed a value of 0.891, indicating high diversity among the isolates. Data from the RAPD-PCR fingerprints were later used to construct a dendrogram for clustal analysis. From the dendrogram, the 34 isolates were grouped into 2 major clusters containing 26 and 8 isolates, respectively. Further analyses of the dendrogram also indicated that the 34 isolated were clustered according to the period of sampling. This is an interesting observation as it shows the high discriminatory capability of RAPD-PCR to be used as molecular epidemiological tool to study the temporal distribution of V. parahaemolyticus.
    Matched MeSH terms: DNA; DNA Fingerprinting; DNA Primers; Random Amplified Polymorphic DNA Technique
  13. Subramaniam G
    JUMMEC, 1998;3:18-21.
    Matched MeSH terms: DNA
  14. Haigh AL, Gibernau M, Maurin O, Bailey P, Carlsen MM, Hay A, et al.
    Am J Bot, 2023 Feb;110(2):e16117.
    PMID: 36480380 DOI: 10.1002/ajb2.16117
    PREMISE: Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual-flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long-debated evolutionary transition between bisexual and unisexual flowers in the family.

    METHODS: Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set.

    RESULTS: The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea.

    CONCLUSIONS: Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here.

    Matched MeSH terms: Sequence Analysis, DNA
  15. Hidayat T, Arif SM, Samad AA
    Pak J Biol Sci, 2013 Oct 01;16(19):1072-5.
    PMID: 24502175
    The mango (Mangifer indica L.) is an important species of the family Anacardiaceae and is one of the most important crops cultivated commercially in many parts of the world. Hence, a better understanding of the phylogeny in this species is crucial as it is the basis knowledge of improving its genetic resources which is beneficial for breeding programs. Phylogenetic relationships among 13 mango cultivars from Indonesia, Malaysia and Taiwan were carried out by comparing DNA sequence data sets derived from the Internal Transcribed Spacer (ITS) region pfnuclear ribosomal DNA (nrDNA). Analysis using parsimony method showed that the cultivars were classified into three major groups. The first group composed almost Malaysian cultivars although with low bootstrap value, the second group consisted of mainly Taiwan cultivars and the last group included mostly Indonesia one. The results indicated that some cultivars have a close relationships with each other even it is originated from different countries. With regards to the relationship among these cultivars, this gives better insight for generating new cultivar.
    Matched MeSH terms: DNA, Ribosomal/genetics*; DNA, Plant/genetics*
  16. Jalilsood T, Baradaran A, Ling FH, Mustafa S, Yusof K, Rahim RA
    Plasmid, 2014 May;73:1-9.
    PMID: 24785193 DOI: 10.1016/j.plasmid.2014.04.004
    Lactobacillus plantarum PA18, a strain originally isolated from the leaves of Pandanus amaryllifolius, contains a pR18 plasmid. The pR18 plasmid is a 3211bp circular molecule with a G+C content of 35.8%. Nucleotide sequence analysis revealed two putative open reading frames, ORF1 and ORF2, in which ORF2 was predicted (317 amino acids) to be a replication protein and shared 99% similarity with the Rep proteins of pLR1, pLD1, pC30il, and pLP2000, which belong to the RCR pC194/pUB110 family. Sequence analysis also indicated that ORF1 was predicted to encode linA, an enzyme that enzymatically inactivates lincomycin. The result of Southern hybridization and mung bean nuclease treatment confirmed that pR18 replicated via the RCR mechanism. Phylogenetic tree analysis of pR18 plasmid proteins suggested that horizontal transfer of antibiotic resistance determinants without genes encoding mobilization has not only occurred between Bacillus and Lactobacillus but also between unrelated bacteria. Understanding this type of transfer could possibly play a key role in facilitating the study of the origin and evolution of lactobacillus plasmids. Quantitative PCR showed that the relative copy number of pR18 was approximately 39 copies per chromosome equivalent.
    Matched MeSH terms: DNA Replication*; DNA, Bacterial/analysis; DNA, Bacterial/genetics*; DNA, Circular/analysis; DNA, Circular/genetics*; DNA, Single-Stranded/analysis; DNA, Single-Stranded/genetics*
  17. Rosazlina R, Jacobsen N, Ørgaard M, Othman AS
    PLoS One, 2021;16(1):e0239499.
    PMID: 33476321 DOI: 10.1371/journal.pone.0239499
    Natural hybridization has been considered a source of taxonomic complexity in Cryptocoryne. A combined study of DNA sequencing data from the internal transcribed spacer (ITS) of nuclear ribosomal DNA and the trnK-matK region of chloroplast DNA was used to identify the parents of Cryptocoryne putative hybrids from Peninsular Malaysia. Based on the intermediate morphology and sympatric distribution area, the plants were tentatively identified as the hybrid Cryptocoryne ×purpurea nothovar. purpurea. The plants were pollen sterile and had long been considered as hybrids, supposedly between two related and co-existing species, C. cordata var. cordata and C. griffithii. The status of C. ×purpurea nothovar. purpurea was independently confirmed by the presence of an additive ITS sequence pattern from these two parental species in hybrid individuals. An analysis of the chloroplast trnK-matK sequences showed that the hybridization is bidirectional with the putative hybrids sharing identical sequences from C. cordata var. cordata and C. griffithii, indicating that both putative parental species had been the maternal parent in different accessions.
    Matched MeSH terms: DNA, Ribosomal/genetics; Sequence Analysis, DNA/methods; DNA, Chloroplast/genetics*; DNA, Ribosomal Spacer/genetics
  18. Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB
    PMID: 33636491 DOI: 10.1016/j.saa.2021.119543
    The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
    Matched MeSH terms: DNA*
  19. Murulitharan K, Yusoff K, Omar AR, Peeters BPH, Molouki A
    Curr Microbiol, 2021 Apr;78(4):1458-1465.
    PMID: 33660046 DOI: 10.1007/s00284-021-02421-z
    Rescue of (-)ssRNA viruses involves the sequential assembly and cloning of the full-length cDNA, which is often a challenging and time-consuming process. The objective of this study was to develop a novel method to rapidly clone the full-length cDNA of a very virulent NDV by only one assembly step. A completely synthetic 15 kb cDNA of a Malaysian genotype VIII NDV known as strain AF2240-I with additional flanking BsmBI sites was synthesised. However, to completely follow the rule-of-six, the additional G residues that are traditionally added after the T7 promoter transcription initiation site were not synthesised. The synthetic fragment was then cloned into low-copy number transcription vector pOLTV5-phiX between the T7 promoter and HDV Rz sequences through digestion with BbsI. The construct was co-transfected with helper plasmids into BSRT7/5 cells. A recombinant NDV called rAF was successfully rescued using transfection supernatant harvested as early as 16 h post-transfection. Virus from each passage showed an intracerebral pathogenicity index (ICPI) and a mean death time (MDT) similar to the parent strain AF2240-I. Moreover, rAF possessed an introduced mutation which was maintained for several passages. The entire rescue using the one-step assembly procedure was completed within a few weeks, which is extremely fast compared to previously used methods.
    Matched MeSH terms: DNA, Complementary/genetics
  20. Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, et al.
    BMC Genomics, 2021 Sep 20;22(1):675.
    PMID: 34544379 DOI: 10.1186/s12864-021-07978-4
    BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

    RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

    CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

    Matched MeSH terms: DNA, Viral/genetics
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links