Affiliations 

  • 1 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia. ardinsu@yahoo.co.id
  • 2 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
Environ Sci Pollut Res Int, 2017 Nov;24(32):25383-25405.
PMID: 28932948 DOI: 10.1007/s11356-017-0141-9

Abstract

The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.