This study aimed to determine the effect of added noise, filtering and time series length on the largest Lyapunov exponent (LyE) value calculated for time series obtained from a passive dynamic walker. The simplest passive dynamic walker model comprising of two massless legs connected by a frictionless hinge joint at the hip was adopted to generate walking time series. The generated time series was used to construct a state space with the embedding dimension of 3 and time delay of 100 samples. The LyE was calculated as the exponential rate of divergence of neighboring trajectories of the state space using Rosenstein's algorithm. To determine the effect of noise on LyE values, seven levels of Gaussian white noise (SNR=55-25dB with 5dB steps) were added to the time series. In addition, the filtering was performed using a range of cutoff frequencies from 3Hz to 19Hz with 2Hz steps. The LyE was calculated for both noise-free and noisy time series with different lengths of 6, 50, 100 and 150 strides. Results demonstrated a high percent error in the presence of noise for LyE. Therefore, these observations suggest that Rosenstein's algorithm might not perform well in the presence of added experimental noise. Furthermore, findings indicated that at least 50 walking strides are required to calculate LyE to account for the effect of noise. Finally, observations support that a conservative filtering of the time series with a high cutoff frequency might be more appropriate prior to calculating LyE.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.