Affiliations 

  • 1 Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India
  • 2 Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia atishkumar@puncakalam.uitm.edu.my
  • 3 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
J Renin Angiotensin Aldosterone Syst, 2015 Sep;16(3):459-68.
PMID: 25944853 DOI: 10.1177/1470320315583582

Abstract

Work on the brain renin-angiotensin system has been explored by various researchers and has led to elucidation of its basic physiologies and behavior, including its role in reabsorption and uptake of body fluid, blood pressure maintenance with angiotensin II being its prominent effector. Currently, this system has been implicated for its newly established effects, which are far beyond its cardio-renal effects accounting for maintenance of cerebral blood flow and cerebroprotection, seizure, in the etiology of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and bipolar disorder. In this review, we have discussed the distribution of angiotensin receptor subtypes in the central nervous system (CNS) together with enzymatic pathways leading to active angiotensin ligands and its interaction with angiotensin receptor 2 (AT2) and Mas receptors. Secondly, the use of angiotensin analogues (angiotensin converting enzyme inhibitors and AT1 and/or AT2 receptor blockers) in the treatment and management of the CNS disorders mentioned above has been discussed.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.