Affiliations 

  • 1 Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
  • 2 School of Medical Sciences, 16150 Kubang Kerian, Kelantan, Malaysia
Heliyon, 2019 Apr;5(4):e01573.
PMID: 31183434 DOI: 10.1016/j.heliyon.2019.e01573

Abstract

Background: Drug resistance remains as a challenge in the treatment of HER2-overexpressed breast cancer. Emerging evidence from clinical studies show relation of oxidized low density lipoprotein (LDL) and very low density lipoprotein (VLDL) level with drug resistance. However, the underlying molecular mechanisms for this effect remain unclear. Therefore, the aim of this study was to determine the effects of oxidized-LDL and VLDL in drug-resistant HER2-overexpressed breast cancer cells.

Methods: An in vitro cell model for tamoxifen-resistant HER2 overexpressed UACC732 cells was created using the pulse method. Cells were exposed to oxidized LDL (oxLDL) and very low density lipoprotein (VLDL) separately. Effects on cell morphology was studied using phase contrast microscopic changes. Percentage of cell viability was measured using proliferation assay kit. Development of tamoxifen resistance was determined based on P-gp expression with flow cytometry. Further analysis includedcell death measurement with flow cytometry method.

Results: UACC732 cells exposed to VLDL exhibited fibroblast-like morphology. This was further supported by proliferation assay, where the percentage of cell viability achieved more than 100% with 100 μg/ml of VLDL exposure, indicating cell proliferation. Findings also showed that VLDL caused reduction in expression of Pgp in resistant cells compared to resistant cells alone (p = 0.02).

Conclusion: Results of this study suggest that VLDL may play a role in growth of drug-resistant HER2-overexpressing cells. Lower expression of P-gp in presence of VLDL need to be investigated further.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.