Affiliations 

  • 1 Department of Food and Nutritional Sciences University of Reading Whiteknights UK
Eng Life Sci, 2019 Jan;19(1):21-30.
PMID: 32624952 DOI: 10.1002/elsc.201800077

Abstract

d-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly-d-lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d-lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate-rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d-lactic acid production (27.9 g/L, 99.9% optical purity of d-lactic acid), with a higher glucose to d-lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d-lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed-batch SSF approach, where it was shown that the d-lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d-lactic acid from DDGS as it reduced the overall processing time and yielded high d-lactic acid concentrations.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.