This work is the consideration of a fractal fractional mathematical model on the transmission and control of corona virus (COVID-19), in which the total population of an infected area is divided into susceptible, infected and recovered classes. We consider a fractal-fractional order
SIR
type model for investigation of Covid-19. To realize the transmission and control of corona virus in a much better way, first we study the stability of the corresponding deterministic model using next generation matrix along with basic reproduction number. After this, we study the qualitative analysis using "fixed point theory" approach. Next, we use fractional Adams-Bashforth approach for investigation of approximate solution to the considered model. At the end numerical simulation are been given by matlab to provide the validity of mathematical system having the arbitrary order and fractal dimension.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.