Affiliations 

  • 1 Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia
  • 2 Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
  • 3 Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
  • 4 Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia. Electronic address: mrkhan@ump.edu.my
J Hazard Mater, 2021 08 05;415:125587.
PMID: 33721778 DOI: 10.1016/j.jhazmat.2021.125587

Abstract

In the present paper, the potentiality of integrating microbial fuel cells (MFCs) with a photocatalytic reactor to maximize the wastewater treatment efficiency with concurrent power generation was explored. Dimethyl phthalate (DMP) and acetic acid (AA) were the employed substrate and the co-substrate, respectively, using Pseudomonas aeruginosa as a biocatalyst. MFCs operated by single substrate showed the maximum power generation of 0.75-3.84 W m-3 whereas an addition of AA as the co-substrate yielded 3-12 fold higher power generation. Pseudomonas aeruginosa produced phenazine-1-carboxylic acid in DMP-fed MFC as the metabolite whereas AA along with DMP yielded pyocyanin which reduced the charge transfer resistance. Chemical oxygen demand (COD) removal efficiency in the MFCs was circa 62% after 11 days of operation. Thereafter, it further increased albeit with a drastic reduction in power generation. Subsequently, the MFC anolyte was treated in a photocatalytic reactor under visible light irradiation and catalyzed by CuO-gC3N4. The performance of photocatalytic reactor was evaluated, with COD and total organic carbon (TOC) removal efficiency of 88% and 86% after 200 min of light irradiation. The present work suggests that the MFC can be integrated with photocatalysis as a sustainable wastewater treatment method with concurrent power generation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.