Stochastic computing (SC) is an alternative computing domain for ubiquitous deterministic computing whereby a single logic gate can perform the arithmetic operation by exploiting the nature of probability math. SC was proposed in the 1960s when binary computing was expensive. However, presently, SC started to regain interest after the widespread of deep learning application, specifically the convolutional neural network (CNN) algorithm due to its practicality in hardware implementation. Although not all computing functions can translate to the SC domain, several useful function blocks related to the CNN algorithm had been proposed and tested by researchers. An evolution of CNN, namely, binarised neural network, had also gained attention in the edge computing due to its compactness and computing efficiency. This study reviews various SC CNN hardware implementation methodologies. Firstly, we review the fundamental concepts of SC and the circuit structure and then compare the advantages and disadvantages amongst different SC methods. Finally, we conclude the overview of SC in CNN and make suggestions for widespread implementation.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.