Background: Challenges to manage, mitigate, or prevent the COVID-19's pandemics are felt by medical, healthcare professionals and governing agencies. Health researchers conduct survey among the citizens to capture their opinion on COVID-19. In such surveys like in Hanafiah and Wan (2020), structural-zero (different from sampling zero) category occurs as they question about perception, knowledge, and communication regarding COVID-19.
Materials: The data were collected in a survey conducted among Malaysians by Hanafiah and Wan regarding COVID-19. The survey focused on people's response about the public communication, knowledge, and perception.
Methods: One of the four question categories in the survey is mutually exclusive with the other three questions. Consequently, there will be no entry in that category. Such group is called structurally zero category in the literature. The literature never probed the migrative split to other categories of the unknown proportion belonging to the structural zero category. In this article, the probability-based new and innovative method configures what proportion in that mutually exclusive category and it is the essence of our method.
Results: The mutually exclusive nature of subquestions manufactured structural zero in their data. A careful analysis of the data has created so far unknown probability concepts in the literature, which we named as "Exodus probabilities" in this article. Its discovery and utility are illustrated and elaborated with application in COVID-19. This methodology is also useful in applications in engineering, epidemiology, marketing, communication networking, etc.
Conclusion: What is quite novel about the discovery of the exodus probability in this article is the evolution of the concepts from the structural-zero category. In such situation, when a category is eliminated, the proportions of the sample might have uncommunicatively transited to other viable categories and our research question is all about configuring their proportions. This is an innovative approach.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.