Natural fibers have attracted great attention from industrial players and researchers for the exploitation of polymer composites because of their "greener" nature and contribution to sustainable practice. Various industries have shifted toward sustainable technology in order to improve the balance between the environment and social and economic concerns. This manuscript aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer composite (NFRPC) product designs and their applications. The first part of the manuscript presents a summary of the background of various natural fibers and their composites in the context of engineering applications. The behaviors of NFPCs vary with fiber type, source, and structure. Several drawbacks of NFPCs, e.g., higher water absorption rate, inferior fire resistance, and lower mechanical properties, have limited their applications. This has necessitated the development of good practice in systematic engineering design in order to attain optimized NRPC products. Product design and manufacturing engineering need to move in a mutually considerate manner in order to produce successful natural fiber-based composite material products. The design process involves concept design, material selection, and finally, the manufacturing of the design. Numerous products have been commercialized using natural fibers, e.g., sports equipment, musical instruments, and electronic products. In the end, this review provides a guideline for the product design process based on natural fibers, which subsequently leads to a sustainable design.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.