Affiliations 

  • 1 Polytechnic Mukah, 96400 Mukah, Sarawak, Malaysia
  • 2 Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
MyJurnal

Abstract

Computer technology has become a very important element in an advanced manufacturing system. The good and systematic data model for the exchange of manufacturing information between different stages of development of product life cycle is paramount to ensure the product is manufactured and delivered to the market successfully. As a result, ISO 10303, an international standard, or well known as Standard for Exchange of Product Model Data (STEP) is not just for providing a neutral data format within the heterogenous CAD systems, its functionality has extended to the whole life cycle of product. STEP Part 21 is the first implementation method from EXPRESS modelling language and implemented successfully as neutral product data to integrate heterogeneous CAD platform. However, this CAD STEP Part21 text file is hardly to be applied in manufacturing processes since it consists of purely geometrical and topological data. In this research, a nonprocedural approach is presented to translate the EXPRESS language model of STEP CAD data into a new product database system model. A new nonprocedural approach of data enrichment and automated machining feature recognition is proposed and implemented on this newly developed product database system and provide a solution for the interrelated tasks of automated machining feature recognition: (1) extraction of geometrical feature from STEP CAD model data of the part (2) formation of part representation suitable for form feature identification (3) matching of form features. This paper proves the validity of this newly developed product database system by translating STEP Part21 file from a commercial CAD system to database system format, data enrichment, performing automated machining feature recognition and lastly generating STEP standard data according to AP224 for supporting STEP based process planning and manufacturing applications.