Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
  • 2 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
  • 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
  • 4 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, Ekiti State 360211, Nigeria
Water Sci Technol, 2021 Jul;84(1):237-250.
PMID: 34280167 DOI: 10.2166/wst.2021.204

Abstract

In this paper, the adsorptive performance of synthesized thiourea (TU) modified poly(acrylonitrile-co-acrylic acid) (TU-P(AN-co-AA)) polymeric adsorbent for capturing p-nitrophenol (PNP) from aqueous solution was investigated. TU-P(AN-co-AA) was synthesized via the redox polymerization method with acrylonitrile (AN) and acrylic acid (AA) as the monomers, then modified chemically with thiourea (TU). Characterization analysis with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental microanalysis for CHNS, zeta potential measurement, Brunauer-Emmett-Teller (BET) surface analysis and thermal analyses were carried out to determine the morphology and physico-chemical properties of the synthesized polymer. The characterization results indicated successful surface modification of polymer with TU. The performance of TU-P(AN-co-AA) for the removal of PNP was investigated under various experimental parameters (adsorbent dosage, initial adsorbate concentration, contact time and temperature). The results demonstrated that the Freundlich isotherm model and pseudo-second-order kinetic model best described the equilibrium and kinetic data, respectively. Thermodynamic studies showed that the uptake of PNP by TU-P(AN-co-AA) was spontaneous and exothermic in nature. The results of the regeneration studies suggested that the TU-P(AN-co-AA) polymer is a reusable adsorbent with great potential for removing PNP from wastewater.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.