Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
  • 2 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
Molecules, 2020 Jun 07;25(11).
PMID: 32517324 DOI: 10.3390/molecules25112650

Abstract

Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.