Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2018 Oct;209:935-943.
    PMID: 30114743 DOI: 10.1016/j.chemosphere.2018.06.157
    Reactive green 19, acid orange 7 and methylene blue are employed as the organic pollutants in this work. A photocatalytic fuel cell is constructed based on the idea of immobilizing zinc oxide onto zinc photoanode and platinum loaded carbon cathode, both evaluated under sunlight and ultraviolet irradiation, respectively. Influence of light and dye structures on the performance of photocatalytic fuel cell are examined. With reactive green 19, 93% and 86% of color removal are achieved after 8 h of photocatalytic fuel cell treatment under sunlight and ultraviolet irradiation, respectively. The decolorization rate of diazo reactive green 19 is higher than acid orange 7 (monoazo dye) when both dyes are treated by photocatalytic fuel cell under sunlight and ultraviolet irradiation, as the electron releasing groups (-NH-triazine) allow reactive green 19 easier to be oxidized. Comparatively, acid orange 7 is less favorable to be oxidized. The degradation of methylene blue is enhanced under sunlight irradiation due to the occurrence of self-sensitized photodegradation. When methylene blue is employed in the photocatalytic fuel cell under sunlight irradiation, the short circuit current (0.0129 mA cm-2) and maximum power density (0.0032 mW cm-2) of photocatalytic fuel cell greatly improved.
    Matched MeSH terms: Coloring Agents/chemistry*
  2. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J Environ Manage, 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
    Matched MeSH terms: Coloring Agents/chemistry*
  3. Kouhnavard M, Ludin NA, Ghaffari BV, Sopian K, Ikeda S
    ChemSusChem, 2015 May 11;8(9):1510-33.
    PMID: 25925421 DOI: 10.1002/cssc.201500004
    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs.
    Matched MeSH terms: Coloring Agents/chemistry*
  4. Yau XH, Low FW, Khe CS, Lai CW, Tiong SK, Amin N
    PLoS One, 2020;15(2):e0228322.
    PMID: 32012195 DOI: 10.1371/journal.pone.0228322
    This study investigates the effects of stirring duration on the synthesis of graphene oxide (GO) using an improved Hummers' method. Various samples are examined under different stirring durations (20, 40, 60, 72, and 80 h). The synthesized GO samples are evaluated through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The GO sample with 72 h stirring duration (GO72) has the highest d-spacing in the XRD results, highest atomic percentage of oxygen in EDX (49.57%), highest intensity of oxygen functional group in FTIR spectra, and highest intensity ratio in Raman analysis (ID/IG = 0.756). Results show that GO72 with continuous stirring has the highest degree of oxidation among other samples. Electrochemical impedance spectroscopy analysis shows that GO72-titanium dioxide (TiO2) exhibits smaller charge transfer resistance and higher electron lifetime compared with the TiO2-based photoanode. The GO72 sample incorporating TiO2 nanocomposites achieves 6.25% photoconversion efficiency, indicating an increase of more than twice than that of the mesoporous TiO2 sample. This condition is fully attributed to the efficient absorption rate of nanocomposites and the reduction of the recombination rate of TiO2 by GO in dye-sensitized solar cells.
    Matched MeSH terms: Coloring Agents/chemistry*
  5. Subramaniam S, Foo KY, Md Yusof EN, Jawad AH, Wilson LD, Sabar S
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1716-1726.
    PMID: 34742842 DOI: 10.1016/j.ijbiomac.2021.11.009
    Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
    Matched MeSH terms: Coloring Agents/chemistry*
  6. Chen SH, Yien Ting AS
    J Environ Manage, 2015 Mar 01;150:274-280.
    PMID: 25527986 DOI: 10.1016/j.jenvman.2014.09.014
    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3.
    Matched MeSH terms: Coloring Agents/chemistry
  7. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al.
    Carbohydr Polym, 2014 Nov 26;113:115-30.
    PMID: 25256466 DOI: 10.1016/j.carbpol.2014.07.007
    Chitosan based adsorbents have received a lot of attention for adsorption of dyes. Various modifications of this polysaccharide have been investigated to improve the adsorption properties as well as mechanical and physical characteristics of chitosan. This review paper discusses major research topics related to chitosan and its derivatives for application in the removal of dyes from water. Modification of chitosan changes the original properties of this material so that it can be more suitable for adsorption of different types of dye. Many chitosan derivatives have been obtained through chemical and physical modifications of raw chitosan that include cross-linking, grafting and impregnation of the chitosan backbone. Better understanding of these varieties and their affinity toward different types of dye can help future research to be properly oriented to address knowledge gaps in this area. This review provides better opportunity for researchers to better explore the potential of chitosan-derived adsorbents for removal of a great variety of dyes.
    Matched MeSH terms: Coloring Agents/chemistry*
  8. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:692307.
    PMID: 25054183 DOI: 10.1155/2014/692307
    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.
    Matched MeSH terms: Coloring Agents/chemistry*
  9. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour Technol, 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
    Matched MeSH terms: Coloring Agents/chemistry*
  10. Abdullah AH, Abdullah EA, Zainal Z, Hussein MZ, Ban TK
    Water Sci Technol, 2012;65(9):1632-8.
    PMID: 22508126 DOI: 10.2166/wst.2012.057
    The adsorption of methyl orange dye from aqueous solution onto penta-bismuth hepta-oxide nitrate, Bi(5)O(7)NO(3), synthesized by precipitation method, was studied in a batch adsorption system. The effects of operation parameters such as adsorbent dose, initial dye concentration, pH and temperature were investigated. The adsorption equilibrium and mechanism of adsorption was evaluated by Langmuir and Freundlich isotherm and different kinetic models, respectively. The results indicate that adsorption is highly dependent on all operation parameters. At optimum conditions, the adsorption capacity was found to be 18.9 mg/g. The adsorption data fits well with the Langmuir isotherm model indicating monolayer coverage of adsorbate molecules on the surface of Bi(5)O(7)NO(3). The kinetic studies show that the adsorption process is a second-order kinetic reaction. Although intra-particle diffusion limits the rate of adsorption, the multi-linearity plot of intra-particle model shows the importance of both film and intra-particle diffusion as the rate-limiting steps of the dye removal. Thermodynamic parameters show that the adsorption process is endothermic, spontaneous and favourable at high temperature.
    Matched MeSH terms: Coloring Agents/chemistry*
  11. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
    Matched MeSH terms: Coloring Agents/chemistry*
  12. Hameed BH, Mahmoud DK, Ahmad AL
    J Hazard Mater, 2008 Oct 30;158(2-3):499-506.
    PMID: 18353547 DOI: 10.1016/j.jhazmat.2008.01.098
    The sorption of basic dye from aqueous solutions by banana stalk waste (BSW), an abundant agricultural waste in Malaysia, was studied in a batch system with respect to pH and initial dye concentration. Sorption isotherm of methylene blue (MB) onto the BSW was determined at 30 degrees C with the initial concentrations of MB in the range of 50-500 mg/L. At pH 2.0, the sorption of dye was not favorable, while the sorption at other pHs (4.0-12.0) was remarkable. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were best represented by the Langmuir isotherm model, with maximum monolayer adsorption capacity of 243.90 mg/g. The sorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the pseudo-second-order kinetic model was the best applicable model to describe the sorption kinetics. The results showed that BSW sorbent was a promising for the removal of MB from aqueous solutions.
    Matched MeSH terms: Coloring Agents/chemistry*
  13. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Jul 15;155(3):601-9.
    PMID: 18178306 DOI: 10.1016/j.jhazmat.2007.11.102
    In this work, pumpkin seed hull (PSH), an agricultural solid waste, is proposed as a novel material for the removal of methylene blue (MB) from aqueous solutions. The effects of the initial concentration, agitation time and solution pH were studied in batch experiments at 30 degrees C. The equilibrium process was described well by the multilayer adsorption isotherm. The adsorption kinetics can be predicted by the pseudo-first-order and the modified pseudo-first-order models. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. Pore diffusion takes place in two distinct regimes, corresponding to diffusion in macro- and mesopores. The results demonstrate that the PSH is very effective in the removal of MB from aqueous solutions.
    Matched MeSH terms: Coloring Agents/chemistry*
  14. Gul K, Sohni S, Waqar M, Ahmad F, Norulaini NAN, A K MO
    Carbohydr Polym, 2016 Nov 05;152:520-531.
    PMID: 27516300 DOI: 10.1016/j.carbpol.2016.06.045
    In the present study, we decorated chitosan (©) with Fe3O4 nanoparticles followed by cross-linking with GO to prepare Fe3O4 supported chitosan-graphene oxide composite (Fe3O4©-GO). Different properties of synthesized material were investigated by SEM, XRD, FTIR, TGA and EDX. Batch adsorption experiments were performed to remove toxic cationic and anionic dyes from industrial wastewater. To maximize removal efficiency of composite material, effect of pH (4-12), time (0-80min), Fe3O4©-GO dosage (2-10mg), initial dye concentration (2-30μgmL̄ (1)) and temperature (303, 313, and 323K) were studied. The uptake of dyes presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model. To understand the interaction of dye with adsorbent, Langmuir and Freundlich isotherm were applied. Thermodynamic studies were conducted to calculate the changes in free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)). In view of practical application, the influence of ionic strength, recycling as well as investigations based on percent recoveries from spiked real water samples were also taken into account.
    Matched MeSH terms: Coloring Agents/chemistry*
  15. Siyal AA, Shamsuddin MR, Khan MI, Rabat NE, Zulfiqar M, Man Z, et al.
    J Environ Manage, 2018 Oct 15;224:327-339.
    PMID: 30056352 DOI: 10.1016/j.jenvman.2018.07.046
    The world water resources are contaminated due to discharge of a large number of pollutants from industrial and domestic sources. A variety of a single and multiple units of physical, chemical, and biological processes are employed for pollutants removal from wastewater. Adsorption is the most widely utilized process due to high efficiency, simple procedure and cost effectiveness. This paper reviews the research work carried out on the use of geopolymer materials for the adsorption of heavy metals and dyes. Geopolymers possess good surface properties, heterogeneous microstructure and amorphous structure. The performance of geopolymers in the removal of heavy metals and dyes is reported comparable to other materials. The pseudo-second order kinetics and Langmuir isotherm models mostly fit to the adsorption data suggesting homogeneous distribution of adsorption sites with the formation of monolayer adsorbate on the surface of geopolymers. Adsorption of heavy metals and dyes onto geopolymers is spontaneous, endothermic and entropy driven process. Future research should focus on the enhancement of geopolymer performance, testing on pollutants other than heavy metals and dyes, and verification on real wastewater in continuous operation.
    Matched MeSH terms: Coloring Agents/chemistry
  16. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH
    Ecotoxicol Environ Saf, 2017 Apr;138:279-285.
    PMID: 28081490 DOI: 10.1016/j.ecoenv.2017.01.010
    Hydrothermal carbonization of biomass wastes presents a promising step in the production of cost-effective activated carbon. In the present work, mesoporous activated carbon (HAC) was prepared by the hydrothermal carbonization of rattan furniture wastes followed by NaOH activation. The textural and morphological characteristics, along with adsorption performance of prepared HAC toward methylene blue (MB) dye, were evaluated. The effects of common adsorption variables on performance resulted in a removal efficiency of 96% for the MB sample at initial concentration of 25mg/L, solution pH of 7, 30°C, and 8h. The Langmuir equation showed the best isotherm data correlation, with a maximum uptake of 359mg/g. The adsorbed amount versus time data was well fitted by a pseudo-second order kinetic model. The prepared HAC with a high surface area of 1135m(2)/g and an average pore size distribution of 35.5Å could be an efficient adsorbent for treatment of synthetic dyes in wastewaters.
    Matched MeSH terms: Coloring Agents/chemistry*
  17. Lai KC, Hiew BYZ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Chiu WS, et al.
    Bioresour Technol, 2019 Feb;274:134-144.
    PMID: 30502604 DOI: 10.1016/j.biortech.2018.11.048
    Graphene oxide/chitosan aerogel (GOCA) was prepared by a facile ice-templating technique without using any cross-linking reagent for metanil yellow dye sequestration. The adsorption performance of GOCA was investigated by varying the adsorbent mass, shaking speed, initial pH, contact time, concentration and temperature. The combined effects of adsorption parameters and the optimum conditions for dye removal were determined by response surface methodology. GOCA exhibited large removal efficiencies (91.5-96.4%) over a wide pH range (3-8) and a high adsorption capacity of 430.99 mg/g at 8 mg adsorbent mass, 400 mg/L concentration, 35.19 min contact time and 175 rpm shaking speed. The adsorption equilibrium was best represented by the Langmuir model. GOCA could be easily separated after adsorption and regenerated for re-use in 5 adsorption-desorption cycles thereby maintaining 80% of its adsorption capability. The relatively high adsorption and regeneration capabilities of GOCA render it an attractive adsorbent for treatment of azo dye-polluted water.
    Matched MeSH terms: Coloring Agents/chemistry
  18. Jawad AH, Abdulhameed AS, Malek NNA, ALOthman ZA
    Int J Biol Macromol, 2020 Dec 01;164:4218-4230.
    PMID: 32861784 DOI: 10.1016/j.ijbiomac.2020.08.201
    In current research work, chitosan (Chi) was subjected to subsequent physical and chemical modifications by incorporating kaolin clay (KA) into its polymeric structure, and crosslinking process with a covalent cross-linker namely epichlorohydrin (ECH) respectively. The final product of crosslinked chitosan-epichlorohydrin/kaolin (Chi-ECH/KA) composite was successfully applied for color removal and chemical oxygen demand (COD) reduction of textile dye namely reactive blue 19 dye (RB19) from aqueous environment. The influence of pertinent parameters, i.e. A: Chi-ECH/KA dose (0.02-0.1 g), B: pH (4-10), and C: time (5-30 min) on the RB19 color removal and COD reduction were statistically optimized by using response surface methodology with Box-Behnken design (RSM-BBD). The experimental data of the adsorption kinetic and the adsorption isotherm demonstrated a better fitness to pseudo-second order model and Langmuir isotherm model respectively. Excellent absorption ability of 560.9 mg/g was recorded for Chi-ECH/KA composite. The calculated thermodynamic functions clarified that the RB19 adsorption process was endothermic and spontaneous in nature. The mechanism of RB19 adsorption onto the Chi-ECH/KA may include electrostatic interactions, hydrogen bonding, Yoshida H-bonding, and n-π interactions. This study introduces Chi-ECH/KA composite as an eco-friendly, potential and multi-function composite bio adsorbent for removal of textile dye and COD reduction from aqueous environment.
    Matched MeSH terms: Coloring Agents/chemistry*
  19. Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S
    J Environ Sci (China), 2019 May;79:174-199.
    PMID: 30784442 DOI: 10.1016/j.jes.2018.11.023
    The remediation of wastewater requires treatment technologies which are robust, efficient, simple to operate and affordable such as adsorption. Lately, three-dimensional (3D) graphene based materials have attracted significant attention as effective adsorbents for wastewater treatment. The intrinsic properties of 3D graphene structure such as large surface area and interconnected porous structure can facilitate the transport of pollutants into the 3D network and provide abundant active sites for trapping the pollutants. For the synthesis of 3D graphene structure, ice-templating is commonly practiced due to its facile steps, cost effectiveness and high scalability potential. This review covers the ice-templating fabrication technique for 3D graphene based materials and their application as adsorbents in eliminating dyes and heavy metals from aqueous media. The assembly mechanisms of the ice-templating fsynthesis are comprehensively discussed. Further discussion on the fundamental principles, critical process parameters and characteristics of ice-templated 3D graphene structures is also included. A thorough review on the mechanisms for batch adsorption of dyes and heavy metals is presented based on the structures and properties of the 3D graphene materials. The review further evaluates the dynamic adsorption in packed columns and the regeneration of 3D graphene based materials.
    Matched MeSH terms: Coloring Agents/chemistry*
  20. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Coloring Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links