The works in this study is to investigate and understand the nature of Acacia mangium axial fatigue strengths under repeated stress. Acacia mangium trees were cut to produce oven-dried Small Clear Specimens that were then tested until fracture in parallel to the grain direction. This was carried out in order to discover its Ultimate Tensile Strength, which was later identified as 143.87 MPa, in parallel to the grain direction (0° grain angle). In the next phase, specimens were tested for fatigue strengths in repeated-tensile sinusoidal waveform loading at 100 Hz frequency. The stress levels for this test were at the ratios of 80, 60, 40, 30, 20 and 10% of the Ultimate Tensile Strength (0° grain angle) for the construction of Life (N) - Stress (S) plots and empirical correlation. It was observed that the Acacia Mangium N-S (Wöhler) plots have an exponential correlation with the N – intercept of vertical axis at five (5) million cycles, while the intercept of horizontal, S – axis, was at 143.87 MPa. The study also observed that Acacia mangium achieves 106 life cycles at 10% stress level. For this reason, it is concluded that the material has a fatigue endurance limit at 10% of the Ultimate Tensile Strength for 0° grain angle.