Affiliations 

  • 1 International Center for Young Scientists, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan. IWASAKI.Takuya@nims.go.jp
  • 2 International Center for Materials Nanoarchitectonics, NIMS, Tsukuba, Ibaraki, 305-0044, Japan. moriyama.satoshi@mail.dendai.ac.jp
  • 3 International Center for Materials Nanoarchitectonics, NIMS, Tsukuba, Ibaraki, 305-0044, Japan
  • 4 Research Center for Functional Materials, NIMS, Tsukuba, Ibaraki, 305-0044, Japan
  • 5 Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
  • 6 Faculty of Engineering, Gunma University, Kiryu, Gunma, 376-8515, Japan. morita@gunma-u.ac.jp
  • 7 International Center for Materials Nanoarchitectonics, NIMS, Tsukuba, Ibaraki, 305-0044, Japan. NAKAHARAI.Shu@nims.go.jp
Sci Rep, 2021 Sep 22;11(1):18845.
PMID: 34552168 DOI: 10.1038/s41598-021-98266-4

Abstract

We report on magnetotransport in a high-quality graphene device, which is based on monolayer graphene (Gr) encapsulated by hexagonal boron nitride (hBN) layers, i.e., hBN/Gr/hBN stacks. In the vicinity of the Dirac point, a negative magnetoconductance is observed for high temperatures >  ~ 40 K, whereas it becomes positive for low temperatures ≤  ~ 40 K, which implies an interplay of quantum interferences in Dirac materials. The elastic scattering mechanism in hBN/Gr/hBN stacks contrasts with that of conventional graphene on SiO2, and our ultra-clean graphene device shows nonzero magnetoconductance for high temperatures of up to 300 K.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.