Gypseous soil is one type of expansive soil that contains a sufficient amount of sulphate. Cement and lime are the most common methods of stabilizing expansive soil, but the problem is that lime-treated gypseous soil normally fails in terms of durability due to the formation of ettringite, a highly deleterious compound. Moisture ingress causes a significant swelling of ettringite crystals, thereby causing considerable damage to structures and pavements. This study investigated the suitability of various materials (nano-Mg oxide (M), metakaolin (MK), and ground granulated blast-furnace slag (GGBS)) for the stabilization of gypseous soil. The results showed soil samples treated with 20% M-MK, M-GGBS, and M-GGBS-MK to exhibit lower swelling rates (<0.01% change in volume) compared to those treated with 10% and 20% of lime after 90 days of curing. However, soil samples stabilized with 10% and 20% binder of [(M-MK), (M-GGBS), and (M-GGBS-MK)] exhibited higher strengths after 90 days of soaking (ranging from 0.96-12.8 MPa) compared to those stabilized with 10% and 20% lime. From the morphology studies, the SEM and EDX analysis evidenced no formation of ettringite in the samples stabilized with M-MK-, M-GGBS-, and M-GGBS-MK. These results demonstrate the suitability of M-MK, M-GGBS, and M-GGBS-MK as effective agents for the stabilization of gypseous soil.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.