Affiliations 

  • 1 Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
  • 2 Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia. anna_ling@imu.edu.my
J Genet Eng Biotechnol, 2021 Oct 06;19(1):148.
PMID: 34613540 DOI: 10.1186/s43141-021-00255-7

Abstract

BACKGROUND: Chloroplast is a type of plastid that is believed to be originated from ancestral cyanobacteria. Chloroplast besides being a major component for photosynthesis, also takes part in another major plant metabolism, making it one of the major components of plants.

MAIN BODY: Chloroplast transformation is an alternative and better genetic engineering approach compared to the nuclear transformation that has been widely applied in plant genetic engineering. Chloroplast transformation has exhibited various positive effects as compared to nuclear transformation. This is a more preferred technique by researchers. To carry out chloroplast transformation, the vector design must be performed, and a selectable marker needs to be incorporated before the chloroplast could uptake the construct. The common way of introducing a gene into the host, which is the chloroplast, involves the biolistic, PEG-mediated, carbon nanotubes carriers, UV-laser microbeam, and Agrobacterium-mediated transformation approaches. Apart from discussing the processes involved in introducing the gene into the chloroplast, this review also focuses on the various applications brought about by chloroplast transformation, particularly in the field of agriculture and environmental science.

CONCLUSION: Chloroplast transformation has shown a lot of advantages and proven to be a better alternative compared to nuclear genome transformation. Further studies must be conducted to uncover new knowledge regarding chloroplast transformation as well as to discover its additional applications in the fields of biotechnology.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.