Glioblastoma multiforme (GBM) is a malignant tumor within the brain. Generally classified as primary and secondary with several different subtypes, ample molecular biomarkers have risen throughout the years which have garnered the attention of researchers. The advancements in genomics and proteomics have allowed researchers to gather prominent molecular biomarkers. All these biomarkers are gathered by means of biopsy or bodily fluid sample collection and are quantitatively analyzed by polymerase chain reaction coupled with other computational technologies. This review highlights the significance, regulation and prevalence of molecular biomarkers such as O6 -methylguanine-DNA methyltransferase, epidermal growth factor receptor vIII, isocitrate dehydrogenase mutation and several others which expressed differently in different types and molecular subtypes of GBM. The discoveries and roles of GBM-specific microRNAs including miR-21 and miR-10b as biomarkers with promising prognostic values were also delineated. The role and mechanism of biomarkers in GBM tumorigenesis are essential in the development of therapy for patients suffering from the disease itself. Thus, this review also discusses the mechanisms, effects and limitations of therapy such as temozolomide, viral gene transfer, biomarker-based vaccines or even engineered T cells for more specific responses. Biomarkers have displayed a high value and could eventually be utilized as drug targets. It is hoped that by combining different aspects of the disease which present with different biomarkers could lead to the development of a robust, effective and innovative take on GBM therapy.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.