The high demand for plastic has led to plastic waste accumulation, improper disposal and environmental pollution. Even though some of this waste is recycled, most ends up in landfills or flows down rivers into the oceans. Therefore, researchers are now exploring better ways to solve the plastic waste management problem. From a socio-economic perspective, there is also a concerted effort to enable energy recovery from plastic waste and convert it into useful products to generate income for targeted segments of the population. In fact, this concept of waste-to-wealth has been adopted by the United Nations as part of its Sustainable Development Goals strategies. The current article begins by reviewing the strengths and weaknesses of plastic recycling before focusing specifically on microwave pyrolysis as an alternative to conventional technologies in plastic waste management, due to its benefit in providing fast and energy-efficient heating. The key parameters that are reviewed in this paper include different types of plastic, types of absorbent, temperatures, microwave power, residence time, and catalysts. The yield of the final product (oil, gaseous and char) varies depending on the main process parameters. Key challenges and limitations of microwave pyrolysis are also discussed in this paper.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.