On-stream inspections are the most appropriate method for routine inspections during plant operation without undergoing production downtime. Ultrasonic inspection, one of the on-stream inspection methods, faces challenges when performed at high temperatures exceeding the recommended 52 °C. This study aims to determine the ultrasonic velocity and attenuation with known material grade, thickness, and temperatures by comparing theoretical calculation and experimentation, with temperatures ranging between 30 °C to 250 °C on low-carbon steel, covering most petrochemical equipment material and working conditions. The aim of the theoretical analysis was to obtain Young's modulus, Poisson's ratio, and longitudinal velocity at different temperatures. The experiments validated the theoretical results of ultrasonic change due to temperature increase. It was found that the difference between the experiments and theoretical calculation is 3% at maximum. The experimental data of velocity and decibel change from the temperature range provide a reference for the future when dealing with unknown materials information on site that requires a quick corrosion status determination.
Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are used in various industries for many applications, such as inspection, logistics, agriculture, and many more. This is because performing a task using UAV makes the job more efficient and reduces the workload needed. However, for a UAV to be operated manually or autonomously, the UAV must be equipped with proper safety features. An anti-collision system is one of the most crucial and fundamental safety features that UAVs must be equipped with. The anti-collision system allows the UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the aspect of sensor usage and the system's working principle. This article provides a comprehensive overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations that prevent a collision at the policy level. The process of anti-collision technologies is studied from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed overview and comparison of the methods of each element and an analysis of their advantages and disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies from the viewpoint of fast obstacle detection and wireless networking are presented.
Petrochemical plants use on-stream inspection often to detect and monitor the corrosion on the equipment and piping system. Compared to ultrasonic thickness gauging and pulse-echo A-scan, phased array corrosion mapping has better coverability and can scan a large area to detect general and localized corrosion. This paper's objective is to obtain documentary evidence for the accuracy of corrosion detection from 30 °C to 250 °C on A36 low-carbon steel by carrying out simulation experiments every 10 °C step. A minimum of three sets of phased array corrosion mapping data in each temperature were collected to study and evaluate the detectability. The data evidence could enhance the confidence level of the plant's end users in using phased array mapping in the future during inspections. The experiments were found to be insufficiently thorough despite addressing the initial concerns, leaving more area for discussion in further studies, such as expanding the investigation to thicker carbon steel, stainless steel, and wedge materials.
Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.