Displaying all 3 publications

Abstract:
Sort:
  1. Alahnomi RA, Zakaria Z, Ruslan E, Ab Rashid SR, Mohd Bahar AA, Shaaban A
    PLoS One, 2017;12(9):e0185122.
    PMID: 28934301 DOI: 10.1371/journal.pone.0185122
    A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
  2. Rozman NAS, Yenn TW, Ring LC, Ab Rashid S, Wen-Nee T, Lim JW
    Trop Life Sci Res, 2023 Mar;34(1):279-291.
    PMID: 37065798 DOI: 10.21315/tlsr2023.34.1.15
    Microbial infection is a frequent complication of diabetic foot ulcers, with up to 82% of ulcers being infected at the initial stage of diabetes. Furthermore, the emergence of beta lactam resistant pathogens managed to eliminate the use of beta lactam antibiotics as a chemotherapeutic alternative. This further increases the amputation and mortality rate. Hence, the aim of this study is to evaluate antimicrobial efficacy of a ketone derivative 2-octylcyclopentanone against diabetic wound pathogens. The inhibitory activity of the compound was determined using disc diffusion and broth microdilution assay. Generally, 2-octylcyclopentanone showed broad-spectrum antimicrobial activity, particularly against beta lactam resistant pathogens. The compound showed comparably better antimicrobial activity than all reference antibiotics, including chloramphenicol, streptomycin, ampicillin and penicillin. In addition, the same compound also inhibits a clinically isolated Pseudonomas aeruginosa that was resistant to all reference antibiotics. The activity was microbicidal based on the low minimal lethality concentration recorded, particularly on MRSA, P. aeruginosa and Candida utilis. The killing efficiency of the compound was concentration dependent. During kill curve analysis, the inhibitory activity of 2-octylcyclopentanone was concentration and time-dependent. 99.9% of reduction of bacterial growth was observed. MRSA and P. aeruginosa, two significant diabetic wound infections, are totally inhibited by the molecule at a concentration of minimum lethality concentration. In short, 2-octylcyclopentanone exhibited significant inhibitory towards wide range of diabetic wound pathogens. Which is considered crucial since it will provide a safe and effective alternative treatment for diabetic ulcer infection.
  3. Ab Rashid S, Tong WY, Leong CR, Tan WN, Lee CK, Anuar MR, et al.
    Food Technol Biotechnol, 2023 Jun;61(2):151-159.
    PMID: 37457903 DOI: 10.17113/ftb.61.02.23.7595
    RESEARCH BACKGROUND: The presence of Yersinia enterocolitica on raw food products raises the concern of yersiniosis as most of the berries are consumed raw. This is a challenging issue from the food safety aspect since it could increase the occurrence of foodborne diseases among humans. Thus, it is crucial to implement an effective sanitation before the packaging.

    EXPERIMENTAL APPROACH: This study aims to synthesize and characterize thymol-loaded polyvinyl alcohol (Thy/PVA) nanoparticles as a sanitizer for postharvest treatment of blueberries. Thy/PVA nanoparticles were characterized by spectroscopic and microscopic approaches, prior to the analyses of antimicrobial properties.

    RESULTS AND CONCLUSIONS: The diameter size of the nanoparticles was on average 84.7 nm, with a surface charge of -11.73 mV. Based on Fourier transform infrared (FTIR) measurement, the Thy/PVA nanoparticles notably shifted to the frequency of 3275.70, 2869.66, 1651.02 and 1090.52 cm-1. A rapid burst was observed in the first hour of release study, and 74.9 % thymol was released from the PVA nanoparticles. The largest inhibition zone was displayed by methicillin-resistant Staphylococcus aureus (MRSA), followed by Y. enterocolitica and Salmonella typhi. However, amongst these bacteria, the inhibition and killing of Y. enterocolitica required a lower concentration of Thy/PVA nanoparticles. The treatment successfully reduced the bacterial load of Y. enterocolitica on blueberries by 100 %.

    NOVELTY AND SCIENTIFIC CONTRIBUTION: Thymol is a plant-based chemical without reported adverse effects to humans. In this study, by using the nanotechnology method of encapsulation with PVA, we improved the stability and physicochemical properties of thymol. This nanoparticle-based sanitizer could potentially promote the postharvest microbiological safety of raw berries, which may become an alternative practice of food safety.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links