METHODS: Fifty adult male Sprague Dawley (SD) rats were randomly allocated to 1 of 5 groups: control, LPS (5 mg/kg), LPS + minocycline (25 mg/kg), LPS + minocycline (50 mg/kg) and LPS + memantine (10 mg/kg). Minocycline and memantine were administered intraperitoneally (i.p) for two weeks, and LPS was injected i.p. once on day 5. ELISA was used to determine the level of phosphorylated tau protein in SD rats' hippocampal tissue. The density and expression of Toll-like receptor-4 (TLR-4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кβ), tumour necrosis factor-alpha (TNF-α), and cyclooxygenase (COX)-2 were determined using Western blot and immunohistochemistry.
RESULTS: Minocycline, like memantine, prevented LPS-induced increasein phosphorylated tau protein level suggested via reduced density and expression of TLR-4, NF-кβ, TNF-αand COX-2 proteins in rat hippocampal tissue. Interestingly, higher doses were shown to be more neuroprotective than lower doses.
CONCLUSION: This study suggests that minocycline suppresses the neuroinflammation signalling pathway and decreased phosphorylated tau protein formation induced by LPS in a dose-dependent manner. Minocycline can be used as a preventative and therapeutic drug for neuroinflammatory diseases such as AD.
MATERIALS AND METHODS: Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels.
RESULTS: In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p