Displaying all 10 publications

Abstract:
Sort:
  1. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I
    Int J Neurosci, 2024 Jun;134(1):56-65.
    PMID: 35638219 DOI: 10.1080/00207454.2022.2084092
    PURPOSE/AIM: Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats.

    MATERIALS AND METHODS: Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels.

    RESULTS: In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p 

    Matched MeSH terms: Memantine/metabolism; Memantine/pharmacology
  2. Parsons C, Lim WY, Loy C, McGuinness B, Passmore P, Ward SA, et al.
    Cochrane Database Syst Rev, 2021 Feb 03;2(2):CD009081.
    PMID: 35608903 DOI: 10.1002/14651858.CD009081.pub2
    BACKGROUND: Dementia is a progressive syndrome characterised by deterioration in memory, thinking and behaviour, and by impaired ability to perform daily activities. Two classes of drug - cholinesterase inhibitors (donepezil, galantamine and rivastigmine) and memantine - are widely licensed for dementia due to Alzheimer's disease, and rivastigmine is also licensed for Parkinson's disease dementia. These drugs are prescribed to alleviate symptoms and delay disease progression in these and sometimes in other forms of dementia. There are uncertainties about the benefits and adverse effects of these drugs in the long term and in severe dementia, about effects of withdrawal, and about the most appropriate time to discontinue treatment.

    OBJECTIVES: To evaluate the effects of withdrawal or continuation of cholinesterase inhibitors or memantine, or both, in people with dementia on: cognitive, neuropsychiatric and functional outcomes, rates of institutionalisation, adverse events, dropout from trials, mortality, quality of life and carer-related outcomes.

    SEARCH METHODS: We searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register up to 17 October 2020 using terms appropriate for the retrieval of studies of cholinesterase inhibitors or memantine. The Specialised Register contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources.

    SELECTION CRITERIA: We included all randomised, controlled clinical trials (RCTs) which compared withdrawal of cholinesterase inhibitors or memantine, or both, with continuation of the same drug or drugs.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed citations and full-text articles for inclusion, extracted data from included trials and assessed risk of bias using the Cochrane risk of bias tool. Where trials were sufficiently similar, we pooled data for outcomes in the short term (up to 2 months after randomisation), medium term (3-11 months) and long term (12 months or more). We assessed the overall certainty of the evidence for each outcome using GRADE methods.

    MAIN RESULTS: We included six trials investigating cholinesterase inhibitor withdrawal, and one trial investigating withdrawal of either donepezil or memantine. No trials assessed withdrawal of memantine only. Drugs were withdrawn abruptly in five trials and stepwise in two trials. All participants had dementia due to Alzheimer's disease, with severities ranging from mild to very severe, and were taking cholinesterase inhibitors without known adverse effects at baseline. The included trials randomised 759 participants to treatment groups relevant to this review. Study duration ranged from 6 weeks to 12 months. There were too few included studies to allow planned subgroup analyses. We considered some studies to be at unclear or high risk of selection, performance, detection, attrition or reporting bias. Compared to continuing cholinesterase inhibitors, discontinuing treatment may be associated with worse cognitive function in the short term (standardised mean difference (SMD) -0.42, 95% confidence interval (CI) -0.64 to -0.21; 4 studies; low certainty), but the effect in the medium term is very uncertain (SMD -0.40, 95% CI -0.87 to 0.07; 3 studies; very low certainty). In a sensitivity analysis omitting data from a study which only included participants who had shown a relatively poor prior response to donepezil, inconsistency was reduced and we found that cognitive function may be worse in the discontinuation group in the medium term (SMD -0.62; 95% CI -0.94 to -0.31). Data from one longer-term study suggest that discontinuing a cholinesterase inhibitor is probably associated with worse cognitive function at 12 months (mean difference (MD) -2.09 Standardised Mini-Mental State Examination (SMMSE) points, 95% CI -3.43 to -0.75; moderate certainty). Discontinuation may make little or no difference to functional status in the short term (SMD -0.25, 95% CI -0.54 to 0.04; 2 studies; low certainty), and its effect in the medium term is uncertain (SMD -0.38, 95% CI -0.74 to -0.01; 2 studies; very low certainty). After 12 months, discontinuing a cholinesterase inhibitor probably results in greater functional impairment than continuing treatment (MD -3.38 Bristol Activities of Daily Living Scale (BADLS) points, 95% CI -6.67 to -0.10; one study; moderate certainty). Discontinuation may be associated with a worsening of neuropsychiatric symptoms over the short term and medium term, although we cannot exclude a minimal effect (SMD - 0.48, 95% CI -0.82 to -0.13; 2 studies; low certainty; and SMD -0.27, 95% CI -0.47 to -0.08; 3 studies; low certainty, respectively). Data from one study suggest that discontinuing a cholinesterase inhibitor may result in little to no change in neuropsychiatric status at 12 months (MD -0.87 Neuropsychiatric Inventory (NPI) points; 95% CI -8.42 to 6.68; moderate certainty). We found no clear evidence of an effect of discontinuation on dropout due to lack of medication efficacy or deterioration in overall medical condition (odds ratio (OR) 1.53, 95% CI 0.84 to 2.76; 4 studies; low certainty), on number of adverse events (OR 0.85, 95% CI 0.57 to 1.27; 4 studies; low certainty) or serious adverse events (OR 0.80, 95% CI 0.46 to 1.39; 4 studies; low certainty), and on mortality (OR 0.75, 95% CI 0.36 to 1.55; 5 studies; low certainty). Institutionalisation was reported in one trial, but it was not possible to extract data for the groups relevant to this review.

    AUTHORS' CONCLUSIONS: This review suggests that discontinuing cholinesterase inhibitors may result in worse cognitive, neuropsychiatric and functional status than continuing treatment, although this is supported by limited evidence, almost all of low or very low certainty. As all participants had dementia due to Alzheimer's disease, our findings are not transferable to other dementia types. We were unable to determine whether the effects of discontinuing cholinesterase inhibitors differed with baseline dementia severity. There is currently no evidence to guide decisions about discontinuing memantine. There is a need for further well-designed RCTs, across a range of dementia severities and settings. We are aware of two ongoing registered trials. In making decisions about discontinuing these drugs, clinicians should exercise caution, considering the evidence from existing trials along with other factors important to patients and their carers.

    Matched MeSH terms: Memantine/adverse effects
  3. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I
    Neurol Res, 2024 Mar;46(3):261-271.
    PMID: 38122814 DOI: 10.1080/01616412.2023.2296754
    INTRODUCTION: The neuroinflammatory response was seen to impact the formation of phosphorylated tau protein in Alzheimer's disease (AD). This study aims to investigate the molecular mechanism of minocycline in reducing phosphorylated tau protein formation in the hippocampus of lipopolysaccharide (LPS)-induced rats.

    METHODS: Fifty adult male Sprague Dawley (SD) rats were randomly allocated to 1 of 5 groups: control, LPS (5 mg/kg), LPS + minocycline (25 mg/kg), LPS + minocycline (50 mg/kg) and LPS + memantine (10 mg/kg). Minocycline and memantine were administered intraperitoneally (i.p) for two weeks, and LPS was injected i.p. once on day 5. ELISA was used to determine the level of phosphorylated tau protein in SD rats' hippocampal tissue. The density and expression of Toll-like receptor-4 (TLR-4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кβ), tumour necrosis factor-alpha (TNF-α), and cyclooxygenase (COX)-2 were determined using Western blot and immunohistochemistry.

    RESULTS: Minocycline, like memantine, prevented LPS-induced increasein phosphorylated tau protein level suggested via reduced density and expression of TLR-4, NF-кβ, TNF-αand COX-2 proteins in rat hippocampal tissue. Interestingly, higher doses were shown to be more neuroprotective than lower doses.

    CONCLUSION: This study suggests that minocycline suppresses the neuroinflammation signalling pathway and decreased phosphorylated tau protein formation induced by LPS in a dose-dependent manner. Minocycline can be used as a preventative and therapeutic drug for neuroinflammatory diseases such as AD.

    Matched MeSH terms: Memantine/metabolism; Memantine/pharmacology
  4. Qaid EYA, Abdullah Z, Zakaria R, Long I
    Neurochem Res, 2023 May;48(5):1480-1490.
    PMID: 36509985 DOI: 10.1007/s11064-022-03842-3
    The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
    Matched MeSH terms: Memantine/pharmacology; Memantine/therapeutic use
  5. Wong RSY, Cheong SK
    Malays J Pathol, 2020 Aug;42(2):157-170.
    PMID: 32860368
    The commonest cause of dementia among the elderly population is Alzheimer's disease (AD). It is a health concern globally as the number of people affected by dementia worldwide is rapidly increasing. Several genes have been linked to AD and the pathogenesis of the disease has been extensively and vigorously examined. Thus far, only a few drugs have been approved by the Food and Drug Administration (FDA) for the pharmacological treatment of AD and a growing body of research has turned to alternative options such as stem cell therapy. This review will give an overview of the pathological and clinical aspects of AD. Although researchers have explored the suitability and feasibility of using various types of stems cells to treat AD, this review will focus mainly on neural stem cells (NSCs)/ neural progenitor cells (NPCs). The behaviour and properties of NSCs will be described, accompanied by a comprehensive discussion of the therapeutic strategies involving the use of NSCs/NPCs in the treatment of the disease.
    Matched MeSH terms: Memantine/therapeutic use
  6. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I
    Int J Mol Sci, 2022 Nov 03;23(21).
    PMID: 36362262 DOI: 10.3390/ijms232113474
    Neuroinflammation following lipopolysaccharide (LPS) administration induces locomotor deficits and anxiety-like behaviour. In this study, minocycline was compared to memantine, an NMDA receptor antagonist, for its effects on LPS-induced locomotor deficits and anxiety-like behaviour in rats. Adult male Sprague Dawley rats were administered either two different doses of minocycline (25 or 50 mg/kg/day, i.p.) or 10 mg/kg/day of memantine (i.p.) for 14 days four days prior to an LPS (5 mg/kg, i.p.) injection. Locomotor activity and anxiety-like behaviour were assessed using the open-field test (OFT). The phosphorylated tau protein level was measured using ELISA, while the expression and density of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding (CREB) protein in the medial prefrontal cortex (mPFC) were measured using immunohistochemistry and Western blot, respectively. Minocycline treatment reduced locomotor deficits and anxiety-like behaviour associated with reduced phosphorylated tau protein levels, but it upregulated BDNF/CREB protein expressions in the mPFC in a comparable manner to memantine, with a higher dose of minocycline having better benefits. Minocycline treatment attenuated LPS-induced locomotor deficits and anxiety-like behaviour in rats and decreased phosphorylated tau protein levels, but it increased the expressions of the BDNF/CREB proteins in the mPFC.
    Matched MeSH terms: Memantine/pharmacology
  7. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
    Matched MeSH terms: Memantine/chemical synthesis; Memantine/pharmacology*; Memantine/chemistry
  8. Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, et al.
    Front Pharmacol, 2020;11:92.
    PMID: 32194397 DOI: 10.3389/fphar.2020.00092
    Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
    Matched MeSH terms: Memantine
  9. Aida Abdul Razak, Maniam, T., Hatta Sidi, Shalisah Sharip, Suriati Mohamed Saini
    ASEAN Journal of Psychiatry, 2014;15(1):93-96.
    MyJurnal
    Objective: This case report highlights the challenges in managing Frontal Lobe Syndrome (FLS) in a patient with end-stage renal disease. Methods: This is a case description of a 58 year-old gentleman who presented with behavioural changes: irritability, mood lability, aggression, psychosis, and overfamiliarity. His presenting symptoms were in keeping with (FLS) with positive findings on Computed Tomography (CT) scan of the brain and also neuropsychological assessments. Difficulties arose in attempts to control his aggression without further compromising his renal function. Results: The usage of the commonly used antipsychotics in controlling aggression was restricted in view of the patient’s renal impairment. Augmentation with low dose memantine proved to be beneficial in this case, without causing further deterioration in renal function. Conclusion: The use of memantine to augment the effect of risperidone was observed to be safe and successful in managing the behavioural changes associated with FLS in adults with end-stage renal disease. ASEAN Journal of Psychiatry, Vol. 15 (1): January - June 2014: 93-96.
    Matched MeSH terms: Memantine
  10. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
    Matched MeSH terms: Memantine/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links