PATIENTS AND METHODS: Male patients aged 50 years and above (including indigenous people) with angiographically diagnosed significant CAD in the recent one year were screened for AAA. Standard definition of abdominal aortic aneurysm and CAD was used. All new patients were followed up for six months for AAA events (ruptured AAA and AAA-related mortality).
RESULTS: A total of 277 male patients were recruited into this study. The total prevalence of undiagnosed AAA in this study population was 1.1% (95% CI 0.2-3.1). In patients with high-risk CAD, the prevalence of undiagnosed AAA was 1.7% (95% CI 0.3-4.8). The detected aneurysms ranged in size from 35.0mm to 63.8mm. Obesity was a common factor in these patients. There were no AAA-related mortality or morbidity during the follow-up. Although the total prevalence of undiagnosed AAA is low in the studied population, the prevalence of sub-aneurysmal aortic dilatation in patients with significant CAD was high at 6.6% (95% CI 3.9-10.2), in which majority were within the younger age group than 65 years old.
CONCLUSION: This was the first study on the prevalence of undiagnosed AAA in a significant CAD population involving indigenous people in the island of Borneo. Targeted screening of patients with high-risk CAD even though they are younger than 65 years old effectively discover potentially harmful asymptomatic AAA and sub-aneurysmal aortic dilatations.
METHODS: A total of 29 patients aged 10 to 18 received a daily oral dose of 50 mg TRF for six months (January 2020 to February 2022), and all had fatty liver disease were detected by ultrasonography and abnormally high alanine transaminase levels (at least two-fold higher than the upper limits for their respective genders). Various parameters, including biochemical markers, FibroScan, LiverFASt, DNA damage, and cytokine expression, were monitored.
RESULTS: APO-A1 and AST levels decreased significantly from 1.39 ± 0.3 to 1.22 ± 0.2 g/L (P = 0.002) and from 30 ± 12 to 22 ± 10 g/L (P = 0.038), respectively, in the TRF group post-intervention. Hepatic steatosis was significantly reduced in the placebo group from 309.38 ± 53.60 db/m to 277.62 ± 39.55 db/m (p = 0.048), but not in the TRF group. Comet assay analysis showed a significant reduction in the DNA damage parameters in the TRF group in the post-intervention period compared to the baseline, with tail length decreasing from 28.34 ± 10.9 to 21.69 ± 9.84; (p = 0.049) and with tail DNA (%) decreasing from 54.13 ± 22.1to 46.23 ± 17.9; (p = 0.043). Pro-inflammatory cytokine expression levels were significantly lower in the TRF group compared to baseline levels for IL-6 (2.10 6.3 to 0.7 1.0 pg/mL; p = 0.047 pg/mL) and TNF-1 (1.73 5.5 pg/mL to 0.7 0.5 pg/mL; p = 0.045).
CONCLUSION: The study provides evidence that TRF supplementation may offer a risk-free treatment option for children with obesity and NAFLD. The antioxidant and anti-inflammatory properties of TRF offer a promising adjuvant therapy for NAFLD treatment. In combination with lifestyle modifications such as exercise and calorie restriction, TRF could play an essential role in the prevention of NAFLD in the future. However, further studies are needed to explore the long-term effects of TRF supplementation on NAFLD in children.
TRIAL REGISTRATION: The study has been registered with the International Clinical Trial Registry under reference number (NCT05905185) retrospective registration on (15/06/2023).