This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics.
The data distribution system of this project is divided into two types, which are a Two-PC Image Reconstruction System and a Two-PC Velocity Measurement System. Each data distribution system is investigated to see whether the results' refreshing rate of the corresponding measurement can be greater than the rate obtained by using a single computer in the same measurement system for each application. Each system has its own flow control protocol for controlling how data is distributed within the system in order to speed up the data processing time. This can be done if two PCs work in parallel. The challenge of this project is to define the data flow process and critical timing during data packaging, transferring and extracting in between PCs. If a single computer is used as a data processing unit, a longer time is needed to produce a measurement result. This insufficient real-time result will cause problems in a feedback control process when applying the system in industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.