Displaying all 5 publications

Abstract:
Sort:
  1. Abnisa F, Anuar Sharuddin SD, Bin Zanil MF, Wan Daud WMA, Indra Mahlia TM
    Polymers (Basel), 2019 Nov 10;11(11).
    PMID: 31717695 DOI: 10.3390/polym11111853
    The conversion of plastic waste into fuel by pyrolysis has been recognized as a potential strategy for commercialization. The amount of plastic waste is basically different for each country which normally refers to non-recycled plastics data; consequently, the production target will also be different. This study attempted to build a model to predict fuel production from different non-recycled plastics data. The predictive model was developed via Levenberg-Marquardt approach in feed-forward neural networks model. The optimal number of hidden neurons was selected based on the lowest total of the mean square error. The proposed model was evaluated using the statistical analysis and graphical presentation for its accuracy and reliability. The results showed that the model was capable to predict product yields from pyrolysis of non-recycled plastics with high accuracy and the output values were strongly correlated with the values in literature.
  2. Alsaedi MA, Abnisa F, Alaba PA, Farouk HU
    PMID: 35103053 DOI: 10.1007/s10098-021-02244-3
    The Saudi economy is driven by the energy sector which mainly derived from petroleum-based resources. Besides export, the Kingdom's consumption of this resource showed a significant increase which linearly promoting CO2 emission increment. Therefore, it is essential to model the Kingdom's energy consumption to estimate the profile of her future energy consumption. This work explores modelling and multi-step-ahead predictions for energy use, gross domestic product (GDP), and CO2 emissions in Saudi Arabia using previous data (1980-2018). The dynamic interrelationship of the variable's nexus was tested using the Granger causality and cointegration method in the short-run and long-run. In the long-run, the models reveal an inverted U-shape relation between CO2 emissions and GDP, validating Environmental Kuznets curve. When energy consumption is increased by 1%, there will be an increase in CO2 emissions by 0.592% at constant GDP, and when GDP is increased by 1%, there will be an increase in CO2 emissions by 0.282% at constant energy used. CO2 emissions appear to be both energy consumption and income elastic in Saudi Arabia in the long-run equilibrium. Granger causality based on vector error correction method reveals unidirectional causality from income to CO2 emissions, and bidirectional causality from CO2 emissions to energy consumption and vice versa in the short-run. In the long-run, bidirectional causality from income to CO2 emissions and vice versa and unidirectional causality from the used energy to CO2 emissions were observed. Also, there is a bidirectional causality from GDP to energy used and vice versa in the short-run, meaning that GDP and energy consumption are interdependent. Saudi Arabia needs to increase energy infrastructure investments and increase energy efficiency by implementing energy management policies, reducing environmental pollution, and preventing the negative effect on economic growth.

    Graphical abstract:

  3. Ghanbari T, Abnisa F, Wan Daud WMA
    Sci Total Environ, 2020 Mar 10;707:135090.
    PMID: 31863992 DOI: 10.1016/j.scitotenv.2019.135090
    The environment sustenance and preservation of global climate are known as the crucial issues of the world today. Currently, the crisis of global warming due to CO2 emission has turned into a paramount concern. To address such a concern, diverse CO2 capture and sequestration techniques (CCS) have been introduced so far. In line with this, Metal Organic Frameworks (MOFs) have been considered as the newest and most promising material for CO2 adsorption and separation. Due to their outstanding properties, this new class of porous materials a have exhibited a conspicuous potential for gas separation technologies especially for CO2 storage and separation. Thus, the present review paper is aimed to discuss the adsorption properties of CO2 on the MOFs based on the adsorption mechanisms and the design of the MOF structures. In addition, the main challenge associated with using this prominent porous material has been mentioned.
  4. Nadhirah Md Rahim SA, Lee CS, Abnisa F, Ashri Wan Daud WM, Aroua MK, Cognet P, et al.
    Chemosphere, 2022 Feb 11.
    PMID: 35157890 DOI: 10.1016/j.chemosphere.2022.133949
    Redox mediators supply an effective way to promote electrons (and protons) transport between the electrode and substrate without being in direct physical contact with the electrode. Here, the carbon-based electrodes with Amberlyst-15 as the redox mediator were used in the electrocatalytic reduction to investigate their ability to indirectly convert glycerol into 1,2-propanediol. The process aims to study the influence of different activated carbon compositions (60%, 70%, 80%, and 90% of total weight) in the activated carbon composite (ACC) electrodes on the electrochemical properties, reaction mechanisms, and selectivity of the yielded products. Their electrochemical behavior and physicochemical properties were determined by cyclic voltammetry (CV) and chronoamperometry (CA), followed by FESEM-EDX for the selected ACC electrode. Electroactive surface area (EASA) plays a role in glycerol mass transport and electrons transfer. EASA of 60ACC, 70ACC, 80ACC, and 90ACC (geometrical surface area of 0.50 cm2) were 19.62, 24.50, 36.74 and 30.83 cm2, respectively. With the highest EASA, 80ACC enhanced the mass transport and electrons transfer process that eventually improved its electrocatalytic activity. It outperformed other ACC electrodes by generating Amberlyst-15 radicals (A-15•-) with high current density at low potential (-0.5 V vs. Ag/AgCl). A-15•- served as the electron-donor for the homogeneous redox reaction with glycerol in delivering highly reactive glycerol radical for further intermediates development and generated 1,2-propanediol at -2.5 V vs. Ag/AgCl (current density of -0.2018 A cm-2). High activated carbon content portrayed a dominant role in controlling EASA and favored consecutive acetol-1,2-propanediol production through the C-O bond breakage. From the galvanostatic electrolysis, 1,2-propanediol selectivity was higher on 80ACC (88.6%) compared to 60ACC (61.4%), 70ACC (70.4%) and 90ACC (72.5%). Diethylene glycol formation was found to be the side reaction but preferred low activated carbon percentage in 60ACC and 70ACC.
  5. Rahim SANM, Lee CS, Abnisa F, Aroua MK, Daud WAW, Cognet P, et al.
    Sci Total Environ, 2020 Feb 25;705:135137.
    PMID: 31846815 DOI: 10.1016/j.scitotenv.2019.135137
    Glycerol is a by-product produced from biodiesel, fatty acid, soap and bioethanol industries. Today, the value of glycerol is decreasing in the global market due to glycerol surplus, which primarily resulted from the speedy expansion of biodiesel producers around the world. Numerous studies have proposed ways of managing and treating glycerol, as well as converting it into value-added compounds. The electrochemical conversion method is preferred for this transformation due to its simplicity and hence, it is discussed in detail. Additionally, the factors that could affect the process mechanisms and products distribution in the electrochemical process, including electrodes materials, pH of electrolyte, applied potential, current density, temperature and additives are also thoroughly explained. Value-added compounds that can be produced from the electrochemical conversion of glycerol include glyceraldehyde, dihydroxyacetone, glycolic acid, glyceric acid, lactic acid, 1,2-propanediol, 1,3-propanediol, tartronic acid and mesoxalic acid. These compounds are found to have broad applications in cosmetics, pharmaceutical, food and polymer industries are also described. This review will be devoted to a comprehensive overview of the current scenario in the glycerol electrochemical conversion, the factors affecting the mechanism pathways, reaction rates, product selectivity and yield. Possible outcomes obtained from the process and their benefits to the industries are discussed. The utilization of solid acid catalysts as additives for future studies is also suggested.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links