Patient movement during Magnetic Resonance Imaging (MRI) scan can cause severe degradation of image quality. In Susceptibility Weighted Imaging (SWI), several echoes are typically measured during a single repetition period, where the earliest echoes show less contrast between various tissues, while the later echoes are more susceptible to artifacts and signal dropout. In this paper, we propose a knowledge interaction paradigm that jointly learns feature details from multiple distorted echoes by sharing their knowledge with unified training parameters, thereby simultaneously reducing motion artifacts of all echoes. This is accomplished by developing a new scheme that boosts a Single Encoder with Multiple Decoders (SEMD), which assures that the generated features not only get fused but also learned together. We called the proposed method Knowledge Interaction Learning between Multi-Echo data (KIL-ME-based SEMD). The proposed KIL-ME-based SEMD allows to share information and gain an understanding of the correlations between the multiple echoes. The main purpose of this work is to correct the motion artifacts and maintain image quality and structure details of all motion-corrupted echoes towards generating high-resolution susceptibility enhanced contrast images, i.e., SWI, using a weighted average of multi-echo motion-corrected acquisitions. We also compare various potential strategies that might be used to address the problem of reducing artifacts in multi-echoes data. The experimental results demonstrate the feasibility and effectiveness of the proposed method, reducing the severity of motion artifacts and improving the overall clinical image quality of all echoes with their associated SWI maps. Significant improvement of image quality is observed using both motion-simulated test data and actual volunteer data with various motion severity strengths. Eventually, by enhancing the overall image quality, the proposed network can increase the effectiveness of the physicians' capability to evaluate and correctly diagnose brain MR images.
Refactoring, a widely adopted technique, has proven effective in facilitating and reducing maintenance activities and costs. Nonetheless, the effects of applying refactoring techniques on software quality exhibit inconsistencies and contradictions, leading to conflicting evidence on their overall benefit. Consequently, software developers face challenges in leveraging these techniques to improve software quality. Moreover, the absence of a categorization model hampers developers' ability to decide the most suitable refactoring techniques for improving software quality, considering specific design goals. Thus, this study aims to propose a novel refactoring categorization model that categorizes techniques based on their measurable impacts on internal quality attributes. Initially, the most common refactoring techniques used by software practitioners were identified. Subsequently, an experimental study was conducted using five case studies to measure the impacts of refactoring techniques on internal quality attributes. A subsequent multi-case analysis was conducted to analyze these effects across the case studies. The proposed model was developed based on the experimental study results and the subsequent multi-case analysis. The model categorizes refactoring techniques into green, yellow, and red categories. The proposed model, by acting as a guideline, assists developers in understanding the effects of each refactoring technique on quality attributes, allowing them to select appropriate techniques to improve specific quality attributes. Compared to existing studies, the proposed model emerges superior by offering a more granular categorization (green, yellow, and red categories), and its range is wide (including ten refactoring techniques and eleven internal quality attributes). Such granularity not only equips developers with an in-depth understanding of each technique's impact but also fosters informed decision-making. In addition, the proposed model outperforms current studies and offers a more nuanced understanding, explicitly highlighting areas of strength and concern for each refactoring technique. This enhancement aids developers in better grasping the implications of each refactoring technique on quality attributes. As a result, the model simplifies the decision-making process for developers, saving time and effort that would otherwise be spent weighing the benefits and drawbacks of various refactoring techniques. Furthermore, it has the potential to help reduce maintenance activities and associated costs.