Displaying all 3 publications

Abstract:
Sort:
  1. Aleid GM, Alshammari AS, Alomari AD, Ahmad A, Alaysuy O, Ibrahim MNM
    PMID: 37632620 DOI: 10.1007/s11356-023-29430-8
    The benthic microbial fuel cell (BMFC) is one of the most efficient types of bioelectrochemical fuel cell systems. Modern bioelectrochemical fuel cells have several drawbacks, including an unstable organic substrate and a microorganism-unfriendly atmosphere. The recent literature to encounter such issues is one of the emerging talks. Researchers are focusing on the utilization of biomass and waste to encounter such challenges and make the technique more feasible at the pilot scale. This study investigated the combination of local bakery waste as an organic substrate with lignocellulosic biomass material. The whole experiment was conducted for 45 days. At an external resistance of 1000 ῼ and an internal resistance of 677 ῼ, the power density was found to be 3.51 mW/m2. Similarly, for Pb2+, Cd2+, Cr3+, Ni2+, and Co2+, the degradation efficiency was 84.40%, 81.21%, 80%, 89.50%, and 86.0%, respectively. The bacterial identification results showed that Liquorilactobacillus nagelii, Proteus mirabilis, Pectobacterium punjabense, and Xenorhabdus thuongxuanensis are the most prominent species found on anode biofilm. The method of electron generation in this study, which includes the degradation of metal ions, is also well described. Lastly, optimising the parameters showed that pH 7 provides a feasible environment for operation. A few future suggestions for practical steps are enclosed for the research community.
  2. Soliman MM, Islam MT, Alam T, Misran N, Abdul Rahim SK, Alzamil A, et al.
    Nanoscale, 2023 Aug 10;15(31):12972-12994.
    PMID: 37477438 DOI: 10.1039/d3nr01941a
    Developing a meta-structure with near-unity absorbance in the visible and infrared spectra for solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications is a long-term research challenge. This research presents a four-layered (insulator-metal-insulator-metal) meta-structure unit cell that showed a peak absorbance of 99.99% at 288-300 nm and the average absorbance of 99.18% over the 250-2000 nm wavelength range in TE and TM modes, respectively. The symmetric pattern of the resonator layer shows polarization insensitivity with an average absorption of 99.18% in both TE and TM modes. Furthermore, the proposed design shows a wide incident angle stability up to ≤60 degrees in both TE and TM modes. The proposed structure also exhibits negative index properties at 288-300 nm and 1000-2000 nm, respectively. The negative index properties of the proposed design generate an anti-parallel surface current flow in the ground and resonator layers, which induces magnetic and electric field resonance and increases absorption. The performance of the proposed design is further validated by the interference theory model and a zero value for the polarization conversion ratio (PCR). The electric field E, magnetic field H, and current distribution are analyzed to explain the absorption mechanism of the proposed meta-structure unit cell. It also exhibits the highest photo-thermal conversion efficiency of 99.11%, demonstrating the viability of the proposed design as a solar absorber. The proposed design promises potentially valuable applications such as solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications because of its decent performance.
  3. Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, et al.
    J Mater Chem B, 2023 Nov 15;11(44):10507-10537.
    PMID: 37873807 DOI: 10.1039/d3tb01469j
    The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links