AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.
MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.
RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.
CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.
Methodology: A total of 72 Sprague-Dawley rats were used in this study. Four groups (n = 18 each) were randomly created: Group 1 - neither subjected to experimental periodontitis nor to any treatment; Group 2 - subjected to experimental periodontitis but not treated; Group 3 - subjected to experimental periodontitis and then treated with the developed nanogels; Group 4 - subjected to experimental periodontitis and then placed on a mixture of pure TCS and FLB treatment. The experimental periodontitis was induced on the lower incisors by applying a ligature which was kept for 14 days. Treatment was done for 7 days, and sampling was done at 7, 14, and 28 day of the post-induction experimental period. Morphometric analysis was conducted to assess the clinical outcomes and healing effect.
Results: The morphometric findings showed that the group treated with the developed TCS and FLB-loaded nanogels recovered better and faster than a mixture of pure TCS and FLB. At 28 day of the experimental period, there was no significant difference (p > 0.05) between the baseline control group and the nanogels treated group.
Conclusions: The developed TCS and FLB-loaded nanogels was found to be effective in the treatment of experimental periodontitis in rats. The used experimental periodontitis model was found to be simple and easily reproducible.