Displaying all 6 publications

Abstract:
Sort:
  1. Arina Nasruddin, Azura Amid
    MyJurnal
    Curcuma longa L. uses widely as a traditional medicine especially in India and China for the treatment of diabetic wounds, inflammatory, hepatic, and digestive disorders. These effects lead to the research of this plant for the treatment of chronic diseases. To assess the tumour inhibition effect of curcumin in animal models by integrating various studies into a systematic literature review (SLR) and meta-analysis. Studies of curcumin treatment in tumor-induced animal models were searched in electronic databases. The assessment of the quality of the studies included and the tumor inhibition effect used SYRCLE’s Risk of Bias tool and Review Manager (The Cochrane Collaboration) software. From the 732 articles identified, only 11 studies met the selection criteria and included in the analysis. Curcumin significantly inhibited the tumor volume in the animal models in overall, and the subgroup analyses revealed that high dose, long-duration curcumin treatment, and intervention by injection have a more significant effect compared to the opposite group. Curcumin was effective in inhibiting tumor volume in animal models. The study quality and heterogeneity of the meta-analysis can probably be improved if a larger-scale bases of animal models and a well-designed study were available
  2. Daddiouaissa, Djabir, Azura Amid
    MyJurnal
    Medicinal plants become very important in our days for their therapeutic benefits to humankind. It sustains human health, and it is commonly known as herbal medicines since ancient times. Annona muricata is a heart-shaped fruit that is consumed raw or as the fruit juice in the tropical area. A. muricata is used in traditional and alternative medicine to treat different ailments such as diabetes, hypertension, respiratory and skin illness, inflammation and cancer. A. muricata contains essential anticancer agents named acetogenins that play the significant role in various cancer types. Acetogenins are strong nicotinamide adenine dinucleotide oxidase inhibitors of the cancer cell's mitochondrial membrane but showed neurotoxic effects in rats. Therefore, acetogenins need to be further investigated to determine the exact mechanisms of action, long-term safety, optimal dosage, and potential side effects. Given the extensive studies on A. muricata, this review focuses on the phytochemistry, medicinal uses, biological activities and the mechanisms of action for the fruit extracts and acetogenins, to stimulate further studies on the fruit pulp used for human consumption.
  3. Arina Nasruddin, Azura Amid, Muhd Ezza Faiez Othman
    MyJurnal
    Green chemical method was applied to synthesize nanoparticles using recombinant
    bromelain. Among the numerous applications of recombinant bromelain, there is still no research
    on nanoparticles synthesis which encourages its utilization in this study. Four chemicals which are
    copper (II) chloride dihydrate (CuCl2.2H2O), cerium nitrate hexahydrate (Ce(NO3)3.6H2O), sodium
    selenite (Na2SeO3), and iron (III) chloride hexahydrate (FeCl3.6H2O) were selected to be screened
    for the suitability in nanoparticles biosynthesis by recombinant bromelain. The nanoparticles
    formed were characterized by using UV-visible absorption spectra. The biosynthesis process then
    was optimized by varying the centrifugation speed, temperature, and time to get the maximum
    absorption and weight of nanoparticles through central composite design (CCD) tool. Only
    CuCl2.2H2O showed a positive result for the screening process which was represented by the
    formation of colloidal solution and a maximum absorption at 580 nm. Thus, optimization was
    carried out for this chemical. Based on the optimization model, maximum absorption and weight
    were predicted at 67.5°C, 2 hrs, and 9,600 rpm. These optimal conditions were validated by
    repeating the biosynthesis process. The absorption and weight of the nanoparticles depended on the
    reaction of the chemical with recombinant bromelain. 3D plots showed that the optimal condition
    for high responses mostly depends on temperature and time.
  4. Azlin Suhaida Azmi, Mohamed Anwar Awan, Azura Amid, Noor Illi Mohamad Puad, Fathilah Binti Ali
    MyJurnal
    Carbon capture and storage (CCS) involves capturing, transporting and storing CO2 geologically underground permanently. Carbon capture using solvent such as amine and aqueous ammonia has been extensively studied by many researchers. However, this capture technology for CCS scheme is costly. As an alternative, CO2 emission can be cost-effectively captured and stored by utilizing the well-understood natural photosynthetic process of marine cyanobacteria. In contrast, the capturing process using cyanobacteria is very slow compared to the chemical absorption mentioned prior. Hence, this study aimed to investigate carbon capturing and storing process using integrated aqueous ammonia and mutated marine cyanobacteria (Synechococcus PCC 7002 IIUM01). The conditions that can maximize CO2 reduction under various conditions; CO2 flow rate (Lpm), absorption temperature (C) and aqueous ammonia concentrations (% (w/v)) were to be identified. The effectiveness of the mutant cyanobacteria was quantified by measuring the cell concentration, percentage reduction in CO2 concentration and lipid content. Synechococcus PCC 7002 IIUM01 showed it robustness by growing in aqueous ammonia solution at the concentration of 0.5 to 1% (w/v) at which the parent strain was not able to tolerate. The best conditions in maximizing CO2 capture and storage while sustaining growth optimally and being a potential biofuel source was observed at 0.5 Lpm of 15% CO2 gas flow rate, 0.75% (w/v) of ammonia concentration and 33C of absorption temperature. At this specified condition, around 68% of CO2 removal was achieved with 9% (w/w) yield of lipid and more than 13% (w/v) of cell concentration obtained.
  5. Dzun Noraini Jimat, Istisyhad Mohamad, Azura Amid, Azlin Suhaida Azmi, Mohd Firdaus Abd. Wahab
    MyJurnal
    Cellulose facial masks have gained a huge interest in the cosmetic industry. Cellulose can be extracted from plant biomass, bacteria and algae. In this study, several formulated PVA-based facial masks (F1, F2, F3, F4) incorporated with microfibrillated cellulose extracted from sugarcane bagasse (MFC-SCB) were prepared. The concentration of polyvinyl alcohol (PVA) was varied (5%–20% (w/w)) while the concentration of microfibrillated cellulose of sugarcane bagasse (MFC-SCB) was fixed at 5% (w/w) to get the appropriate composition of the facial masks. The MFC-SCB was
    extracted through chemical treatment assisted with ultrasonication. Sensory tests in terms of adhesion to the skin, spreadability, color, odor, and drying time were performed. These tests were carried out by requesting the volunteers to rate the performance of the masks. The results showed that the formulated facial mask F3 (15% [w/w] of PVA and 5% [w/w] of MFC-SCB) has the highest average score (13.9) which is 82% from the total score compared to other formulated masks. However, the standard formulation mask F5 (15% [w/w] of PVA and 5% [w/w] of sodium carboxylmethyl cellulose, CMC) achieved the highest score (13.5) compared to F3 (12.5). The findings of this study proved that the presence of MFC-SCB with PVA has a competitive performance with the standard facial mask formulation.
  6. Hashim YZ, Phirdaous A, Azura A
    Pharmacognosy Res, 2014 Jul;6(3):191-4.
    PMID: 25002797 DOI: 10.4103/0974-8490.132593
    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links