Displaying all 4 publications

Abstract:
Sort:
  1. Ahsan MJ, Choupra A, Sharma RK, Jadav SS, Hassan MZ, Bakht MA, et al.
    PMID: 28425854 DOI: 10.2174/1871520617666170419124702
    We report herein, the synthesis of two new series of oxadiazole analogues, and their cytotoxicity evaluation. The oxadiazole analogues (5a-h and 12a-h) were structurally related to the heterocyclic (1,3,4- oxadiazole) linked aryl core of IMC-038525 (tubulin polymerization inhibitor), NSC 776715, and NSC 776716, with further modification by incorporating methylene linker. The title compounds (5a-h and 12a-h) were synthesized in good yields, and were characterized by IR, NMR, and mass spectral data. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI US) Protocol against NCI-60 human cell lines derived from nine different panels. 2-(5-{[(4-Chlorophenyl)amino]methyl}-1,3,4-oxadiazol-2- yl)phenol (5f) showed maximum cytotoxicity among the first series oxadiazoles (5a-h), while 2-[(2,4- dichlorophenoxy)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole (12c) showed maximum cytotoxicity among the second series oxadiazoles (12a-h), with the mean percen growth inhibitions (GIs) of 71.56 and 72.68 respectively at 10 μM drug concentrations. Both the compounds (5f and 12c) showed superior cytotoxicity than clinically prevalent anticancer drugs, Imatinib and Gefitinib in one dose assay. The compound 12c was further screened in five dose assay (0.01, 0.1, 1, 10 and 100 μM), and the results was found to be promising, with GI50 values varies between 1.61 and >100 μM, with comparatively higher selectivity towards the renal cancer cell lines. Furthermore, the compounds, 5f and 12c inhibited the polymerization of tubulin with, an IC50 of 2.8 and 2.2 μM, respectively.
  2. El-Sayed NN, Alafeefy AM, Bakht MA, Masand VH, Aldalbahi A, Chen N, et al.
    Molecules, 2016 Dec 02;21(12).
    PMID: 27918459
    Some novel hydrazone derivatives 6a-o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, ¹H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A₂ (sPLA₂), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA₂ rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a-o with GIIA sPLA₂, proteinase K and hydrazones 6a-e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
  3. Ullah F, Javed F, Mushtaq I, Rahman LU, Ahmed N, Din IU, et al.
    Int J Biol Macromol, 2023 Jan 05;230:123131.
    PMID: 36610570 DOI: 10.1016/j.ijbiomac.2022.123131
    3-D Bioprinting is employed as a novel approach in biofabrication to promote skin regeneration following chronic-wounds and injury. A novel bioink composed of carbohydrazide crosslinked {polyethylene oxide-co- Chitosan-co- poly(methylmethacrylic-acid)} (PEO-CS-PMMA) laden with Nicotinamide and human dermal fibroblast was successfully synthesized via Free radical-copolymerization at 73 °C. The developed bioink was characterized in term of swelling, structural-confirmation by solid state 13C-Nuclear Magnetic Resonance (NMR), morphology, thermal, 3-D Bioprinting via extrusion, rheological and interaction with DNA respectively. The predominant rate of gelation was attributed to the electrostatic interactions between cationic CS and anionic PMMA pendant groups. The morphology of developed bioink presented a porous architecture satisfying the cell and growth-factor viability across the barrier. The thermal analysis revealed two-step degradation with 85 % weight loss in term of decomposition and molecular changes in the bioink moieties By applying low pressure in the range of 25-50 kPa, the optimum reproducibility and printability were determined at 37 °C in the viscosity range of 500-550 Pa. s. A higher survival rate of 92 % was observed for (PEO-CS-PMMA) in comparison to 67 % for pure chitosan built bioink. A binding constant of K ≈ 1.8 × 106 M-1 recognized a thermodynamically stable interaction of (PEO-CS-PMMA) with the Salmon-DNA. Further, the addition of PEO (5.0 %) was addressed with better self-healing and printability to produce skin-tissue constructs to replace the infected skin in human.
  4. Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, et al.
    Int J Biol Macromol, 2023 Mar 31;232:123476.
    PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476
    With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links