[Purpose] Computational intelligence similar to pattern recognition is frequently confronted with high-dimensional data. Therefore, the reduction of the dimensionality is critical to make the manifold features amenable. Procedures that are analytically or computationally manageable in smaller amounts of data and low-dimensional space can become important to produce a better classification performance. [Methods] Thus, we proposed two stage reduction techniques. Feature selection-based ranking using information gain (IG) and Chi-square (Chisq) are used to identify the best ranking of the features selected for emotion classification in different actions including knocking, throwing, and lifting. Then, feature reduction-based locality sensitivity discriminant analysis (LSDA) and principal component analysis (PCA) are used to transform the selected feature to low-dimensional space. Two-stage feature selection-reduction methods such as IG-PCA, IG-LSDA, Chisq-PCA, and Chisq-LSDA are proposed. [Results] The result confirms that applying feature ranking combined with a dimensional-reduction method increases the performance of the classifiers. [Conclusion] The dimension reduction was performed using LSDA by denoting the features of the highest importance determined using IG and Chisq to not only improve the effectiveness but also reduce the computational time.
Parkinson's disease (PD) is a type of progressive neurodegenerative disorder that has affected a large part of the population till now. Several symptoms of PD include tremor, rigidity, slowness of movements and vocal impairments. In order to develop an effective diagnostic system, a number of algorithms were proposed mainly to distinguish healthy individuals from the ones with PD. However, most of the previous works were conducted based on a binary classification, with the early PD stage and the advanced ones being treated equally. Therefore, in this work, we propose a multiclass classification with three classes of PD severity level (mild, moderate, severe) and healthy control. The focus is to detect and classify PD using signals from wearable motion and audio sensors based on both empirical wavelet transform (EWT) and empirical wavelet packet transform (EWPT) respectively. The EWT/EWPT was applied to decompose both speech and motion data signals up to five levels. Next, several features are extracted after obtaining the instantaneous amplitudes and frequencies from the coefficients of the decomposed signals by applying the Hilbert transform. The performance of the algorithm was analysed using three classifiers - K-nearest neighbour (KNN), probabilistic neural network (PNN) and extreme learning machine (ELM). Experimental results demonstrated that our proposed approach had the ability to differentiate PD from non-PD subjects, including their severity level - with classification accuracies of more than 90% using EWT/EWPT-ELM based on signals from motion and audio sensors respectively. Additionally, classification accuracy of more than 95% was achieved when EWT/EWPT-ELM is applied to signals from integration of both signal's information.
Parkinson's Disease (PD) is characterized as the commonest neurodegenerative illness that gradually degenerates the central nervous system. The goal of this review is to come out with a summary of the recent progress of numerous forms of sensors and systems that are related to diagnosis of PD in the past decades. The paper reviews the substantial researches on the application of technological tools (objective techniques) in the PD field applying different types of sensors proposed by previous researchers. In addition, this also includes the use of clinical tools (subjective techniques) for PD assessments, for instance, patient self-reports, patient diaries and the international gold standard reference scale, Unified Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of these approaches have been highlighted in this paper, giving an insight on the current state of the art. It is followed by explaining the merits of the multiple sensor fusion platform compared to single sensor platform for better monitoring progression of PD, and ends with thoughts about the future direction towards the need of multimodal sensor integration platform for the assessment of PD.