The present study aimed at exploring whether sunlight exposure might account for the relative difference in COVID-19-related morbidity and mortality between tropical and non-tropical countries. A retrospective observational study was designed and data from the World Health Organization weekly COVID-19 epidemiological update was compiled. We examined the total number of confirmed COVID-19 cases per 100 000 population, as well as the total number of COVID-19-related mortalities per 100 000 population. Solar variables data were obtained from the Global Solar Atlas website (https://globalsolaratlas.info/). These data were analyzed to determine the association of sunlight exposure to COVID-19-related morbidity and mortality in tropical and non-tropical countries. Results revealed a statistically significant decrease in the number of confirmed COVID-19 cases per 100 000 population (P<0.001), as well as the number of COVID-19-related mortalities per 100 000 population (P<0.001) between tropical and non-tropical countries. Analyses of sunlight exposure data found that specific photovoltaic power output, global horizontal irradiation, diffuse horizontal irradiation and global tilted irradiation at optimum angle were significantly inversely correlated to COVID-19-related morbidity and mortality. This suggests that stronger sunlight exposure potentially leads to lower COVID-19-related morbidity and mortality. Findings from this study suggest that the relatively low COVID-19-related morbidity and mortality in tropical countries were possibly due to better sunlight exposure that translates into adequate vitamin D status.
This paper deliberates the extraction, characterization and examination of potential application of soluble polysaccharides of palm kernel cake (PKC) as a prebiotic. The PKC was defatted and crude polysaccharide was obtained through water, citric acid or NaOH extraction. The physiochemical properties of the extracted polysaccharides viz. total carbohydrates, protein content, solubility rate, monosaccharides composition, structural information and thermal properties were also determined. The extracted soluble polysaccharides were further subjected to a digestibility test using artificial human gastric juice. Finally, their prebiotic potential on two probiotics, namely Lactobacillus plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 were evaluated in vitro. It was observed that PKC contained ash (5.2%), moisture (7.4%), carbohydrates (65.8%), protein (16.5%) and fat (5.1%). There were significant differences (P 95%). Protein content in SCPW, SCPCA and SCPN are 0.72, 0.40 and 0.58, respectively, and the peaks which indicated the presence of protein were observed at approximately 1640 cm-1 (amide I). FTIR spectroscopy revealed that the polysaccharides extracts were linked to β and α-glycosidic bonds and thermal analysis using differential scanning calorimeter (DSC) showed the main degradation temperature of SP is about 121 to 125 °C. The SP were found to be highly resistance (> 96%) to hydrolysis when subjected to artificial human gastric juice. The prebiotics potentials of the polysaccharides on probiotics in vitro demonstrated an increase in proliferation of Lb. plantarum ATCC 8014 and Lb. rhamnosus ATCC 53103 with decrease in the pH of the medium and producing organic acids.All the above findings strongly indicated that polysaccharides extracted from PKC, an industrial waste, have a potential to be exploited as novel prebiotics.