Displaying all 2 publications

Abstract:
Sort:
  1. Ratnasari A, Syafiuddin A, Boopathy R, Malik S, Aamer Mehmood M, Amalia R, et al.
    Bioresour Technol, 2022 Jan;344(Pt B):126239.
    PMID: 34737137 DOI: 10.1016/j.biortech.2021.126239
    The palm oil mill effluent (POME) from palm milling oil activities is discharged into various water bodies which poses several environmental problems including turbidity, increases COD and BOD, adds oil and grease, increases total nitrogen, and other pollutants. Therefore, it requires effective treatment to remove the pollutants before disposal. The objective was to critically discuss the performance of POME pretreatments along with their limitations. To offer a coverage on the present less efficient technologies, the opportunities and challenges of advanced pretreatments that combine magnetic materials and natural composites as adsorbents are comprehensively reviewed here. Moreover, potential of various magnetic materials for POME pretreatment has been described. Several existing pretreatment methods such as physical pretreatments, chemical pretreatments, coagulation-flocculation, and adsorption can remove pollutant content from POME with certain limitations and the use of magnetic composite adsorbents can enhance the treatment efficiency.
  2. Amirah Mohd Napi NN, Ibrahim N, Adli Hanif M, Hasan M, Dahalan FA, Syafiuddin A, et al.
    Bioengineered, 2023 Dec;14(1):2276391.
    PMID: 37942779 DOI: 10.1080/21655979.2023.2276391
    Microplastic (MP) is an emerging contaminant of concern due to its abundance in the environment. Wastewater treatment plant (WWTP) can be considered as one of the main sources of microplastics in freshwater due to its inefficiency in the complete removal of small MPs. In this study, a column-based MP removal which could serve as a tertiary treatment in WWTPs is evaluated using granular activated carbon (GAC) as adsorbent/filter media, eliminating clogging problems commonly caused by powder form activated carbon (PAC). The GAC is characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and contact angle measurement to determine the influence of its properties on MP removal efficiency. MPs (40-48 μm) removal up to 95.5% was observed with 0.2 g/L MP, which is the lowest concentration tested in this work, but still higher than commonly used MP concentration in other studies. The performance is reduced with further increase in MP concentration (up to 1.0 g/L), but increasing the GAC bed length from 7.5 to 17.5 cm could lead to better removal efficiencies. MP particles are immobilized by the GAC predominantly by filtration process by being entangled with small GAC particles/chips or stuck between the GAC particles. MPs are insignificantly removed by adsorption process through entrapment in GAC porous structure or attachment onto the GAC surface.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links