Displaying all 7 publications

Abstract:
Sort:
  1. Sulaiman B, Boyce PC
    Trop Life Sci Res, 2010 Dec;21(2):85-90.
    PMID: 24575201 MyJurnal
    Homalomena galbana Baharuddin S. & P.C. Boyce is described from the Maliau Basin Conservation Area, Sabah, representing the first species of the Homalomena Supergroup to be recorded from Sabah, and the first mesophytic species of the Supergroup to be described from Borneo. The species is illustrated and a brief discussion on the pollination role of interpistillar staminodes is presented.
  2. Sulaiman B, Boyce PC
    Trop Life Sci Res, 2010 Dec;21(2):1-6.
    PMID: 24575195
    Rhaphidophora megasperma Engl., a species hitherto regarded as endemic to Sarawak, East Malaysia, is published as a new record for Peninsular Malaysia. It is the first species in the Rhaphidophora Spathacea group recorded for western Sunda. The species is illustrated and a key to the perforate-laminated Rhaphidophora in Peninsular Malaysia is presented.
  3. Wong SY, Ooi IH, Boyce PC
    Bot Stud, 2014 Dec;55(1):51.
    PMID: 28510939 DOI: 10.1186/s40529-014-0051-9
    BACKGROUND: Haniffia Holttum is a genus of three described species of terrestrial gingers hitherto restricted to Peninsular Thailand and various localities in Peninsular Malaysia.

    RESULTS: With generic placement confirmed using nrITS, trn K and mat K plastid sequence data, Haniffia santubongensis S.Y. Wong & P.C. Boyce is described as a taxonomically novel species representing a new generic record for Borneo, to where it is endemic to Mount Santubong, Kuching Division, NW Sarawak, Malaysian Borneo. An identification key to all species is given and H. santubongensis is illustrated from living plants.

    CONCLUSION: Haniffia santubongensis is the fourth species of Haniffia so far described, and the first occurring on sandstone.

  4. Ulrich S, Hesse M, Bröderbauer D, Wong SY, Boyce PC
    Taxon, 2012 Apr 13;61(2):281-292.
    PMID: 28904408
    Pollen characters in Araceae accord well with recent DNA-based phylogenies, and here we provide a new example of "compass needle" quality in Araceae on the basis of two closely related genera, Schismatoglottis and Apoballis. All investigated Schismatoglottis pollen is psilate (smooth pollen surface) with calcium crystals covering the pollen surface. By contrast, pollen of species transferred to recently resurrected Apoballis (Apoballis acuminatissima and A. mutata) is distinctively echinate (spiny). A unique layer covers the endexine of Schismatoglottis, and the whole pollen surface of Apoballis. Our findings strongly suggest that "Schismatoglottis" species with echinate pollen fall into the genus Apoballis. Moreover, all schismatoglottid taxa perform spathe movements during anthesis to control the movement of pollinators. The spathe movements of Apoballis acuminatissima clearly differ from those known in Schismatoglottis species, and indeed are so far unique for the entire family. This, together with differences in floral odour is strongly suggestive of differences in pollination ecology between the genera Schismatoglottis and Apoballis.
  5. Low SL, Wong SY, Ooi IH, Hesse M, Städler Y, Schönenberger J, et al.
    Plant Biol (Stuttg), 2016 Jan;18(1):84-97.
    PMID: 25688576 DOI: 10.1111/plb.12320
    Homoplastic evolution of 'unique' morphological characteristics in the Schismatoglottideae - many previously used to define genera - prompted this study to compare morphology and function in connection with pollination biology for Aridarum nicolsonii, Phymatarum borneense and Schottarum sarikeense. Aridarum nicolsonii and P. borneense extrude pollen through a pair of horned thecae while S. sarikeense sheds pollen through a pair of pores on the thecae. Floral traits of spathe constriction, presence and movement of sterile structures on the spadix, the comparable role of horned thecae and thecae pores, the presence of stamen-associated calcium oxalate packages, and the timing of odour emission are discussed in the context of their roles in pollinator management. Pollinators for all investigated species were determined to be species of Colocasiomyia (Diptera: Drosophilidae).
  6. Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, et al.
    Nature, 2024 May;629(8013):843-850.
    PMID: 38658746 DOI: 10.1038/s41586-024-07324-0
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links