Displaying all 6 publications

Abstract:
Sort:
  1. Phang WK, Bukhari FDM, Zen LPY, Jaimin JJ, Dony JJF, Lau YL
    Parasitol Int, 2022 Apr;87:102519.
    PMID: 34800724 DOI: 10.1016/j.parint.2021.102519
    Information about Plasmodium malariae is scanty worldwide due to its "benign" nature and low infection rates. Consequently, studies on the genetic polymorphisms of P. malariae are lacking. Here, we report genetic polymorphisms of 28 P. malariae circumsporozoite protein (Pmcsp) isolates from Malaysia which were compared with those in other regions in Asia as well as those from Africa. Phylogenetic analysis revealed that most Malaysian P. malariae isolates clustered together but independently from other Asian isolates. Low nucleotide diversity was observed in Pmcsp non-repeat regions in contrast to high nucleotide diversity observed in non-repeat regions of Plasmodium knowlesi CSP gene, the current major cause of malaria in Malaysia. This study contributes to the characterisation of naturally occurring polymorphisms in the P. malariae CSP gene.
  2. Liew JWK, Bukhari FDM, Jeyaprakasam NK, Phang WK, Vythilingam I, Lau YL
    Emerg Infect Dis, 2021 10;27(10):2700-2703.
    PMID: 34545786 DOI: 10.3201/eid2710.210412
    We detected 2 natural, asymptomatic Plasmodium inui monoinfections in humans in Malaysia by using nested PCR on concentrated high-volume blood samples. We found a P. inui-positive Anopheles cracens mosquito in the same site as the human infections. Investigators should use ultrasensitive detection methods to identify simian malaria parasite transmission in humans.
  3. Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, et al.
    Int J Infect Dis, 2022 Jul;120:132-134.
    PMID: 35472524 DOI: 10.1016/j.ijid.2022.04.036
    OBJECTIVES: Preventing reverse transcription loop-mediated isothermal amplification (RT-LAMP) carryover contamination could be solved by adding deoxyuridine triphosphate (dUTP) and uracil-DNA glycosylase (UDG) into the reaction master mix.

    METHODS: RNA was extracted from nasopharyngeal swab samples by a simple RNA extraction method.

    RESULTS: Testing of 77 samples demonstrated 91.2% sensitivity (95% confidence interval [CI]: 78-98.2%) and 100% specificity (95% confidence interval: 92-100%) using UDG RT-LAMP.

    CONCLUSION: This colorimetric UDG RT-LAMP is a simple-to-use, fast, and easy-to-interpret method, which could serve as an alternative for diagnosis of SARS-CoV-2 infection, especially in remote hospitals and laboratories with under-equipped medical facilities.

  4. Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, et al.
    BMC Infect Dis, 2021 Nov 17;21(1):1162.
    PMID: 34789179 DOI: 10.1186/s12879-021-06876-0
    BACKGROUND: Current assays for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on time consuming, costly and laboratory based methods for virus isolation, purification and removing inhibitors. To address this limitation, we propose a simple method for testing RNA from nasopharyngeal swab samples that bypasses the RNA purification step.

    METHODS: In the current project, we have described two extraction-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of SARS-CoV-2 by using E gene and RdRp gene as the targets.

    RESULTS: Here, results showed that reverse transcription loop-mediated isothermal amplification assays with 88.4% sensitive (95% CI: 74.9-96.1%) and 67.4% sensitive (95% CI: 51.5-80.9%) for E gene and RdRp gene, respectively.

    CONCLUSION: Without the need of RNA purification, our developed RT-LAMP assays for direct detection of SARS-CoV-2 from nasopharyngeal swab samples could be turned into alternatives to qRT-PCR for rapid screening.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links